查看原文
其他

听三位诺贝尔奖得主讲引力波 | 袁岚峰

2017-12-27 袁岚峰 风云之声

                   

关注风云之声提升思维层次

解读科学,洞察本质

戳穿忽悠,粉碎谣言

导读

400年前,伽利略开始用望远镜仰望星空。两年前,我们第一次直接观测到了引力波。人类认识世界的进程,令人心潮澎湃。科学的火种,在宗教、战争的威逼面前或许显得弱小,但人类一旦开始科学的征途,就绝对不会停息。最终,科学会证明自身才是最强大的力量。


2015年9月14日,人类首次直接探测到了引力波这个爱因斯坦在一百年前预言的奇妙现象,并在2016年初公布后引爆了公众舆论。2017年的诺贝尔物理学奖,授予了对此做出决定性贡献的三位科学家雷纳·韦斯(Rainer Weiss)、巴里•巴里什(Barry Clark Barish)和基普·索恩(Kip Stephen Thorne)。


2017年12月18日,中国科学技术大学上海研究院的科普论坛“墨子沙龙”举行了引力波大会,邀请这三位诺贝尔奖得主演讲,并现场回答提问。科大常务副校长潘建伟院士担任主持人,台下的观众充满热情,提问络绎不绝,网络直播也有几十万人观看。              

              

墨子沙龙引力波大会


三人的报告题目都是《向科学家、工程师以及他们的学生介绍LIGO和引力波》(LIGO and Gravitation Waves forScientists, Engineers and their Students),LIGO就是他们的探测器(激光干涉引力波天文台,Laser Interferometer Gravitational-Wave Observatory)。雷纳·韦斯、巴里•巴里什和基普·索恩依次介绍这个题目的第一、二、三部分。我躬逢其盛,在这里向大家介绍一下引力波的基本概念,以及这次大会的有趣见闻。


向科学家、工程师以及他们的学生介绍LIGO和引力波,第一部分


最基本的问题是:“引力”为什么会有个“波”?


两个黑洞合并,放出引力波,形成类似太极的图案


对此基本的回答是:因为时空有了结构。


展开来解释一下。我们平时观察到的物质的运动,都是发生在时空之中的。不妨理解为,物质是演员,时空是这些演员表演的舞台。普通的波,例如水波、声波、电磁波,都是演员在运动,舞台不动。而引力波,是舞台本身的运动。所以在许多报道中,把引力波称为“时空的涟漪”。


舞台能有波动,是因为它在不同的地方可以有所不同,也就是“有结构”。这是广义相对论特有的性质,牛顿力学和狭义相对论都没有。


牛顿:又有人要把我批判一番,搞个大新闻?


如果你对引力波、相对论的细节不感兴趣,或者无法看懂,那么你只需要记住“引力波是舞台本身的运动”就够了,这一点认识就足以使你超越大多数的吃瓜群众。如果你想了解更多,那么我们继续往下谈。


在牛顿力学中,时空是一个平淡无奇的舞台,因为时间就是均匀的流逝,空间就是均匀的绵延。无论物质有多少、怎么运动,对这个舞台都没有影响,所以不可能有波动。现在我们把牛顿的时空观称为绝对时空观。


爱因斯坦的相对论之所以叫相对论,就是因为他打破了牛顿的绝对时空观,从此时空变成相对的东西了。


牛顿力学有什么地方不对呢?不对的是“速度的叠加”。比如说,你在一列速度为50米每秒的火车里前进,你相对于火车的速度是5米每秒,那么你相对于地面的速度就是55米每秒。这很符合日常的经验,但应用到光速时,问题就来了。


地球既然在宇宙中运动,根据牛顿力学,光在地球不同方向(例如经线和纬线方向)的速度就应该不同。1887年,真的有人做了这样的实验,这是一个非常著名的实验,叫做迈克尔孙-莫雷实验(Michelson–Morley experiment)。这个实验设计得非常精密,如果光在地球不同方向的速度有差值,就会由于两路光走过的路程不同(即有“光程差”),产生干涉条纹。但实验结果却让所有人大吃一惊:看不到干涉条纹。也就是说,测不出任何差值!


迈克尔孙-莫雷实验,本来以为会观测到干涉条纹,结果却是没有干涉条纹


许多科学家对此提出了种种解释,但都是小修小补,只在这里打块补丁,顾不上其他地方,结果是左支右绌,把整个物理学体系搞得矛盾百出。1905年,爱因斯坦迈出了革命性的一步。他提议,“光速在所有的参照系中都不变”应该作为一条基本原理,而不是一个要从其他原理推出的结论。


爱因斯坦:大家好,我来了


一旦迈出这一步,后面的推理就顺理成章了。根据光速不变原理,再加上一条“相对性原理”(在所有的惯性参照系即做匀速直线运动的参照系中,物理规律都具有相同的形式),爱因斯坦就推出了整个狭义相对论。


根据狭义相对论,可以得到许多惊人的结果,例如钟慢效应(在运动的参照系中时间流逝得比静止的参照系中慢)、尺缩效应(在运动的参照系中距离比静止的参照系中短)。


而所有结果中最惊人的,是质能关系E = mc2(这里c是光速,约等于30万公里每秒),一个体系包含的能量等于它的质量乘以光速的平方。能量和质量在某种意义上是一回事,只差一个常数因子。


根据质能关系,只要知道任何一个过程(例如核反应)前后的质量差,就可以预测这个过程放出的能量,都不需要知道过程的细节。这正是核武器的基本原理。所以对于怀疑狭义相对论的人(尤其是热衷于推翻相对论的民科),我们可以提出一个非常硬的证明,就是核武器!


广岛和长崎的原子弹爆炸


狭义相对论使我们对时空的理解,也发生了深刻的变化。在牛顿力学中,时间就是时间,空间就是空间,两者不会混合到一起。而在狭义相对论中,时间和空间必不可免地会混合到一起。


对此最方便的理解,是回顾一下高中学的解析几何。在解析几何中,如果你把坐标系旋转一下,就可以把新的坐标轴方向x′、y′变成旧的坐标轴方向x、y的组合。但无论你采用什么坐标系,解题时都会得到相同的结果。所以任何一个单独的坐标轴方向都不重要,真正重要的只是它们的组合。


坐标系的旋转,把新的坐标轴方向x′、y′变成旧的坐标轴方向x、y的组合


同样的,在狭义相对论中,换一个参照系就可以把时间部分地变成空间,把空间部分地变成时间,所以时间和空间各自都不重要,真正重要的是它们的整体,即“时空”。原来的一维时间、三维空间,整合成了四维的时空。钟慢效应、尺缩效应、质能关系等等,原因都在于这个新的时空观。


狭义相对论表明了,所有的惯性参照系都是等价的,物理规律在所有的惯性参照系中都具有相同的形式。下一个问题自然就是,非惯性的参照系怎么办?我们能不能构造一种理论,使得物理规律在所有的参照系中都具有相同的形式,无论它们是不是惯性参照系?


非惯性的参照系,就是存在加速度的参照系。爱因斯坦注意到,一个质量为m的物体受到的万有引力正比于m,而由此产生的加速度等于引力除以质量,把m又除掉了,所以跟m无关。因此,一个非惯性参照系跟一个引力场,在物理上是等价的。


举个例子,如果你置身于一艘远离任何星球的宇宙飞船之中,它的加速度等于地球上的重力加速度,那么你看到的现象将跟在地面上完全一样。你会感到向下的重力,所有的物体会自发地往下掉。如果不向外看,你无法判断你是在地球上,还是在这样一艘飞船里。


引力场和非惯性参照系的等价性,叫做“等效原理”。爱因斯坦从这个原理出发,把狭义相对论推广成了广义相对论。


爱因斯坦:大家好,我又来了


狭义相对论的数学比较简单,基本的微积分就够了,甚至不用微积分、只用高中数学都能得到大半。而广义相对论的数学就非常复杂,要用到“微分几何”,连大学物理系里非理论物理专业的学生都大多不会,爱因斯坦本人也是在推导的过程中找数学家朋友现学的。


但最重要的是,这样一套复杂的理论居然推导出来了,而且经过许多实验的验证,证实它非常精确。凡是广义相对论跟牛顿力学预测不同的地方,全都是广义相对论正确,牛顿力学错误。


这样的例子包括,水星近日点进动、光在经过太阳时的偏折、不同高度钟表的走时差别等等。最后这个效应对于GPS、北斗等卫星导航系统非常重要,如果不考虑原子钟在地面和在卫星上的时间差,定位就会差之毫厘谬以千里。


在广义相对论中,我们对引力的描述方式变得比牛顿的平方反比律复杂多了,成了绕一个很大的弯子:质量引起时空的弯曲,物体在弯曲的时空中运动,看起来就像是受到引力的作用一样。


这话是什么意思?


我们看一张平坦的纸,它的曲率是零。在这张纸上面,三角形的内角和等于180度,圆的周长等于2π乘以半径,如此等等,欧几里得几何(就是你初中学的平面几何)的定理都成立。


如果把这张纸变形一下,比如说变成一个球面,曲率大于零,许多欧几里得几何的定理在这里就不成立了。例如,三角形的内角和大于180度(你甚至可以做出三个内角都是直角的球面三角形,它的内角和高达270度),圆的周长小于2π乘以半径。


球面三角形


如果把这张纸变成马鞍形,曲率小于零,你同样也会发现许多违反欧几里得几何的现象,只是表现在相反的方向。例如,三角形的内角和小于180度,圆的周长大于2π乘以半径。


马鞍面上的三角形


当我们把弯曲的对象从一张纸(一个二维的面)推广到相对论的时空(一个四维的几何结构),就明白“时空弯曲”是什么意思了,就是时空的每一点都可以有个或正或负或零的曲率。广义相对论给出了质量与附近的时空曲率之间的关系,质量越大,对周围的时空产生的弯曲就越大。


当一个物体不受其他力、只在引力的作用下运动时,无论时空是弯曲的还是平坦的,它都只是按照距离最短的路线即“短程线”运动。如果时空是平坦的,短程线就是直线,这时没有引力,它做的就是匀速直线运动。如果时空是弯折的,短程线就变成了曲线。这时在其他观察者看来,这个物体似乎就是在引力的作用下运动。例如地球绕太阳的公转轨道,就是地球在太阳周围的弯曲时空中的短程线。


太阳导致的时空弯曲,使地球的短程线变成曲线(虚线是直线,实线是实际走的路线,即短程线)


用一个常用的比喻来说:太阳好比一个大胖子,他往沙发上一坐,就产生一个大坑,其他人坐在沙发上时,都会不由自主地被这个大坑陷进去!


太阳导致时空弯曲


现在你可以明白,在广义相对论中,不同地方的时空可以具有不同的曲率,所以说时空有了结构。既然有了结构,自然就可以波动了。实际上,根据广义相对论,引力波应该是一种极其常见的现象,任何不是球对称的物体的加速运动都会产生引力波


任何非球对称物体的加速运动都会产生引力波


咦,既然引力波这么常见,我们为什么花了这么久才探测到它?


原因在于,引力波的可观测效应非常小


引力波的实际效果,是使时空在某一个方向压缩,在另一个垂直的方向伸长。在武侠电影中,经常有一拳打出造成时空波动的形象,对,就是这个feel!


霸王拳!(《三国演义》动画2017版,第一季第一集)


更具体地说,引力波在距离为L的两点之间产生的变形,等于L乘以一个常数h。实验上真正要测量的目标,就是这个比例常数h。


但是这个比例常数小得惊人。对于两个黑洞合并、把三个太阳质量的能量转化为引力波这样暴烈的事件(这就是2015年9月14日探测到的引力波事件),h也只有10的-21次方的量级!


LIGO的光路长度是4公里。在这个距离上,变形只有10的-18次方米的量级。一个原子的半径,都大约有10的-10次方米。一个原子核的半径,大约是10的-15次米。想想看,在几公里的长度上,只差一个原子核半径的千分之一,这是什么样的难度!这种实验是不是堪称疯狂!


引力波测量的挑战


这正是人类花了100年才探测到引力波的原因。但最神奇的是,我们终究还是做到了!


LIGO的探测原理,跟迈克尔孙-莫雷实验有相似之处,都是通过光程差产生干涉条纹。不同之处在于,相对论会告诉你,迈克尔孙-莫雷实验中看起来应该有光程差,但“这个真没有”,而LIGO实验中看起来没有光程差,但在引力波通过时就“这个可以有”。正是由于干涉条纹对于光程差的极端敏感性,才能测出这么微小的效应。


LIGO的探测原理


实际上,现代科学的许多成果,都来自探测技术的进步。


2016年8月16日,中国发射了世界第一颗量子科学实验卫星“墨子号”。它的主要成果之一,是在卫星与地面站之间实现量子保密通信。而要实现这一点,关键就是在星地之间上千公里的距离上,探测到单个光子,因为量子保密通信要求一个光脉冲只能包含一个光子。


卫星和地面处于高速的相对运动之中,所以它们之间的对准难度很大,好比“在五十公里以外把一枚一角硬币扔进一列全速行驶的高铁上的一个矿泉水瓶里”。但经过潘建伟等研究者的艰苦努力,我们终究还是做到了!


墨子号量子卫星与兴隆地面站用信标光对准


最近,日本科学家也发射了一颗卫星,用来研究量子保密通信。由于他们的对准精度不够,为了收到信号,一个光脉冲不得不包含一亿个光子,所以这颗卫星没有实现量子保密通信,只是验证了一些相关的技术。对此事的详细分析,可以参见我的文章《日本真的成功进行超小型卫星量子通信实验了吗?》(https://mp.weixin.qq.com/s/h0X0Tz6Ijw-eWaxqi9q2cg)。这件事从反面表现出,探测技术的进步有多么重要。


实际上,科学界在直接探测到引力波之前,就普遍相信引力波的存在,因为它早就被间接探测到了。1993年的诺贝尔物理学奖,授予了拉塞尔·赫尔斯(Russell A. Hulse)和小约瑟夫·泰勒(Joseph H. Taylor Jr.),原因是他们在1974年发现了一种新的脉冲星,这就是引力波的间接证据。


拉塞尔·赫尔斯和小约瑟夫·泰勒


请注意,这两人的成果不是发现脉冲星,而是发现一种新的脉冲星。脉冲星是一种发出周期性电磁脉冲的天体。由于它的周期很准,最初人们把这种脉冲当作外星人发来的信号,甚至还为外星人起了个名字“小绿人”。


小绿人


发现脉冲星的,是剑桥大学教授安东尼·休伊什(Antony Hewish)和他的学生乔瑟琳·贝尔(Jocelyn Bell),时间是1967年。1974年,安东尼·休伊什获得了诺贝尔物理学奖。很遗憾,乔瑟琳·贝尔没有获奖。诺贝尔奖委员会可能压根没注意到她的存在。这是诺贝尔奖历史上一个重大的缺憾。


拉塞尔·赫尔斯和小约瑟夫·泰勒的新发现是,有一个脉冲星的周期在逐渐伸长,说明它的能量在逐渐损失。两人对此的解释是,这个体系其实是两颗相互围绕旋转的脉冲星,它们在通过引力波放出能量。观测到的能量损失的速度,跟理论预测的完全相符,所以大家都公认这是引力波存在的强有力证据,不过毕竟是间接证据。所以LIGO的成果,是第一次发现引力波存在的直接证据,是个“实锤”。


引力波存在的间接证据。右图中的各个点是能量损失的观测数据,曲线是理论预测,两者吻合的程度惊人


引力波的传播速度跟电磁波一样,都是光速。但引力波有一个特点跟电磁波非常不同,就是它很难被吸收,也就是说很不容易衰减。在这个意义上,引力波可以传遍整个宇宙。我们甚至有望听到“原初引力波”,它是138亿年前作为宇宙开端的大爆炸的余响。


电磁波与引力波的对比


因此,引力波是一种全新的探测工具,通过它,我们可以对许多以前无法观察的现象获得了解。这可能给我们对宇宙的认识,带来一场革命。未来15年,多个领域的引力波探测窗口将一个个打开,我们将迎来一个引力波科学的黄金时代!


四个领域的引力波窗口将在未来15年内开启


原则上,引力波也可以作为一种发送信息的手段。在刘慈欣的小说《三体》中,人类就是通过引力波广播的方式,把三体星的坐标公布出去的。有趣的是,发射引力波的那艘飞船就叫做“万有引力号”。


《三体》中的头号英雄章北海


现场有观众提问:引力波作为一种传送信息的工具,效果怎么样?


基普·索恩的回答是:在发射方面,可以认为引力波是一种很好的方法,因为它可以传遍整个宇宙。但是,在接收方面,引力波是一种非常糟糕的选择,因为探测它实在太困难了。因此,引力波会是你愿意采取的最后一种传送信息的方法。如果不是别无选择,你应该是没有理由用引力波来传送信息的。


我想,《三体》里受到三体人攻击、要被赶到澳大利亚团灭的地球人,就是到了这种别无选择的时候吧!


现场还有观众提问:按照粒子物理的描述,引力是由引力子来传递的。我们已经探测到了引力波这么微弱的信号,是不是也快探测到引力子了?


回答是:理论分析表明,引力子的数量是如此巨大,以至于几乎无法探测到单个的引力子。我的估计是,我们这一代看不到,你这一代看不到,你的下一代也看不到。


在这些关于引力波的科学知识之外,三位诺贝尔奖得主的人生感悟也给我留下了深刻的印象。


基普·索恩是三人中唯一的理论家。1953年,他在13岁时,读到了美籍俄裔物理学家、大爆炸理论的提出者之一乔治·伽莫夫(George Gamow)的科普著作《从一到无穷大》(One Two Three ...Infinity),从此立志投身科学。我也看过伽莫夫这本名著,也深受感动,这确实是一部值得向所有人推荐的经典著作。


基普·索恩被《从一到无穷大》感动:烟雨,我平凡事,此生,我怀大志……


在加州理工学院上大学的时候(1958-1962),基普·索恩的感受并不像一般人想象的那样轻松愉快,反而是感到许多同学都比自己聪明,压力不小。用他的话说,“我挣扎了一番”(I struggled)。


基普·索恩的挣扎方法,是坚持用自己的方式学习物理,理解物理。他写了很多笔记,用自己的方式证明定理,现场展示了几条他当年的笔记。最终,他的坚持不懈得到了回报,他对这些物理问题获得了透彻的理解。虽然他的理解方式可能跟其他人不一样,但他的记忆更长久,更适合科研应用。


我挣扎了一番


从正常的观点看来,基普·索恩是个“学霸”,但是他讲的偏偏是这样一个“勤能补拙”的故事。因此,我觉得我们对科学家的宣传大可不必在“学霸”、“学神”方面着墨太多,这是把重点带偏了,过多地强调天分,反而给普通人找到了不学习的借口。真正值得多宣传的,是学习的精神和学习的方法。


最早开始探测引力波的,是美国物理学家约瑟夫·韦伯(Joseph Weber,1919-2000),从1960年代就开始了。现在普遍认为,他的技术路线精度不够,不可能探测到引力波。但无论如何,大家都公认他是这个领域的开创者。


如果没有他,根本就不会有人认真对待这个想法。大家只会觉得引力波在理论上存在,探测不可能,然后就直接跳过了。只有约瑟夫·韦伯,用他的想象力、热情以至于疯狂,告诉大家探测引力波是在人力所及范围内的,激起了科学界对这个目标的兴趣。


约瑟夫·韦伯


引力波探测到之后,LIGO的领导人都向约瑟夫·韦伯表达了敬意。“成功不必在我,而功力必不唐捐”,约瑟夫·韦伯达到了这样的境界!


雷纳·韦斯在职业生涯之初,就投身于引力波探测这个大坑,将此作为自己毕生的目标。而基普·索恩却不是这样,在他刚开始做教授时,是不相信人类能够探测到引力波的。


一开始我是拒绝的


为此,在1973-1975年间,他跟雷纳·韦斯等人进行了一番辩论,但结果却是……他被说服了!从此,他决心付出全部的努力,想尽一切办法,和雷纳·韦斯等人一起实现这个目标。


我被他们说服了:我痴情红颜,我心甘情愿,我千里把君寻……为了佳人回眸一笑,我立下这毒誓!


经过多年的奋斗,他们终于搭建了LIGO装置。但科学家一般并不擅长做管理,团队一大,管理就变得焦头烂额,项目的进度非常慢,中间还有一段时间失去了政府的资助。一个字:惨。幸好他们引进了精通管理的巴里•巴里什,把这样一个大型的国际合作项目整顿得井井有条,快速推进。如果没有巴里•巴里什,可能他们永远都不会成功。


最初的LIGO由于分辨率不够,没有得到任何结果,以至于美国国家科学基金会只愿意再给他们一次“最后的机会”。但当2015年9月系统升级之后,刚刚运行了两天,就探测到了引力波。幸福来得太突然,令他们自己都感到意外。这就像烧水,烧到99摄氏度都不开,但再提高一度到100摄氏度,水就沸腾了。世上无难事,只要肯登攀!


在LIGO团队中,还有一位重要的开创者,英国物理学家罗纳德·德雷弗(Ronald William Prest Drever)。令人遗憾的是,他在2017年3月7日去世,享年85岁。诺贝尔奖不能颁给去世的人,罗纳德·德雷弗可以说是与诺贝尔奖失之交臂。


1976-1978年,罗纳德·德雷弗参与创建引力波实验室。当年大家都在青葱岁月,现在已经阴阳相隔。送战友,踏征程,默默无语两眼泪,耳边响起驼铃声……


事实上,雷纳·韦斯、巴里•巴里什和基普·索恩也分别是85岁、81岁和77岁高龄了。所以2017年的诺贝尔物理学奖授予这三人,可以理解为“抢救性颁奖”。这样三位老人家,仍然为了科学四处奔走,向各国人民传播科学的知识与精神,真是令人敬佩!(当然,出场费也不会少……)


引力波大会圆桌会议,三位诺贝尔奖得主演讲之后回答观众的提问。一点儿也不虚伪,受到了创伤不流泪,爱的路上不徘徊,像激流中的鱼儿永远不气馁,真叫人敬佩,真叫人敬佩,真叫人敬佩……


观众问得最多的问题之一,就是在长达几十年的艰苦工作中,你们有没有想过得奖?有没有想过放弃?


他们的回答,在科学工作者听来都是顺理成章的,几乎是必然的回答:得奖从来都不是科学研究的原因。我们做这些研究,是因为对研究本身的兴趣,日常的研究工作都是乐趣的来源。如果不是这样,没有人能忍受几十年的艰苦而且可能失败的劳动。


著名的物理学家、1965年诺贝尔物理学奖获得者理查德·费曼(Richard P. Feynman)长期在加州理工学院担任教授,基普·索恩当年想必也听过他的课。费曼讲过这样一个故事。有一家杂志来采访他,一开始双方都聊得很开心。最后杂志社提了个问题:你能不能讲讲你生活中人性的那些方面?没想到,这个问题令费曼勃然大怒:你的意思是,研究物理学就不是人性了?我认为研究物理学很人性,跟旅行、打鼓或者任何其他的活动同样的人性!我非常人性地希望,你的杂志见鬼去吧!


理查德·费曼


这个故事反映了对科学的一种常见的误解。费曼的态度虽然比较冲动,但话糙理不糙。在我看来,好奇心就是人类的天性之一,对科学的追寻不但不违反人性,而且是人性中最可贵的一部分


在雷纳·韦斯、巴里•巴里什和基普·索恩三人当中,公众名声最大的大概是基普·索恩,因为他跟斯蒂芬·霍金(Stephen Hawking)是好朋友,许多人都在《时间简史》等著作中看到过他跟霍金就各种科学问题打赌的故事。


斯蒂芬·霍金


此外,基普·索恩还为电影《星际穿越》作过科学顾问。不出所料,现场也有观众问他关于这部电影的问题。问的是:按照《星际穿越》的启示,通过进入五维空间,是不是就可以时间旅行?


这个问题属于脑洞大开,基普·索恩的回答却是中规中矩:其实,我们压根不知道时间旅行有没有可能。按照现在的标准理论,应该是不可能的。我只是和霍金探讨过,如果要使时间旅行成为可能,需要对理论做什么样的修正。至于真实的宇宙是否满足这样的理论,还需要更多的实验,我们现在并不知道。


虽然这个回答可能会让提问者扫兴,但我觉得这个回答很负责任。在公众面前,确实应该这样回答,让他们知道科学家是怎样思考的,知道科学家跟艺术家的区别。


400年前,伽利略开始用望远镜仰望星空。两年前,我们第一次直接观测到了引力波。人类认识世界的进程,令人心潮澎湃。人只不过是一根芦苇,是自然界最脆弱的东西,但他是一根会思想的芦苇。科学的火种,在宗教、战争的威逼面前或许显得弱小,但人类一旦开始科学的征途,就绝对不会停息。最终,科学会证明自身才是最强大的力量。


从400年前的伽利略到两年前的LIGO


如前所述,令基普·索恩决心投身科学的是乔治·伽莫夫的科普著作《从一到无穷大》。为了继承伽莫夫的事业,他后来也写了一本科普著作《星际穿越中的科学》(The Science of Interstellar),希望把科学的火焰传递下去。


《星际穿越中的科学》


这种精神,不也是我们的使命吗?



背景简介:本文作者为袁岚峰,中国科学技术大学化学博士,中国科学技术大学合肥微尺度物质科学国家实验室副研究员,科技与战略风云学会会长,微博@中科大胡不归,知乎@袁岚峰(https://www.zhihu.com/people/yuan-lan-feng-8)。

本文2017年12月26日发表于“中国科普博览”(http://mp.weixin.qq.com/s/QgvY4DXMTdv_eaixojURoA)。

出品:科普中国

制作:中国科学技术大学袁岚峰

监制:中国科学院计算机网络信息中心

“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。本文由科普中国融合创作出品,转载请注明出处。

责任编辑:郭尖尖



欢迎关注风云之声


知乎专栏:

http://zhuanlan.zhihu.com/fengyun

一点资讯:

http://www.yidianzixun.com/home?page=channel&id=m107089

今日头条:

http://toutiao.com/m6256575842



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存