通俗易懂:图卷积神经网络入门详解
以下文章来源于SimpleAI ,作者郭必扬
【导读】GCN问世已经有几年了(2016年就诞生了),但是这两年尤为火爆。本人愚钝,一直没能搞懂这个GCN为何物,最开始是看清华写的一篇三四十页的综述,读了几页就没读了;后来直接拜读GCN的开山之作,也是读到中间的数学部分就跪了;再后来在知乎上看大神们的讲解,直接被排山倒海般的公式——什么傅里叶变换、什么拉普拉斯算子等等,给搞蒙了,越读越觉得:“哇这些大佬好厉害,哎我怎么这么菜!”。
就这么反反复复,尝试一次放弃一次,终于慢慢有点理解了,慢慢从那些公式的里跳了出来,看到了全局,也就慢慢明白了GCN的原理。今天,我就记录一下我对GCN“阶段性”的理解。
GCN的概念首次提出于ICLR2017(成文于2016年):
一、GCN是做什么的
在扎进GCN的汪洋大海前,我们先搞清楚这个玩意儿是做什么的,有什么用。
深度学习一直都是被几大经典模型给统治着,如CNN、RNN等等,它们无论再CV还是NLP领域都取得了优异的效果,那这个GCN是怎么跑出来的?是因为我们发现了很多CNN、RNN无法解决或者效果不好的问题——图结构的数据。
回忆一下,我们做图像识别,对象是图片,是一个二维的结构,于是人们发明了CNN这种神奇的模型来提取图片的特征。CNN的核心在于它的kernel,kernel是一个个小窗口,在图片上平移,通过卷积的方式来提取特征。这里的关键在于图片结构上的平移不变性:一个小窗口无论移动到图片的哪一个位置,其内部的结构都是一模一样的,因此CNN可以实现参数共享。这就是CNN的精髓所在。
再回忆一下RNN系列,它的对象是自然语言这样的序列信息,是一个一维的结构,RNN就是专门针对这些序列的结构而设计的,通过各种门的操作,使得序列前后的信息互相影响,从而很好地捕捉序列的特征。
上面讲的图片或者语言,都属于欧式空间的数据,因此才有维度的概念,欧式空间的数据的特点就是结构很规则。但是现实生活中,其实有很多很多不规则的数据结构,典型的就是图结构,或称拓扑结构,如社交网络、化学分子结构、知识图谱等等;即使是语言,实际上其内部也是复杂的树形结构,也是一种图结构;而像图片,在做目标识别的时候,我们关注的实际上只是二维图片上的部分关键点,这些点组成的也是一个图的结构。
图的结构一般来说是十分不规则的,可以认为是无限维的一种数据,所以它没有平移不变性。每一个节点的周围结构可能都是独一无二的,这种结构的数据,就让传统的CNN、RNN瞬间失效。所以很多学者从上个世纪就开始研究怎么处理这类数据了。这里涌现出了很多方法,例如GNN、DeepWalk、node2vec等等,GCN只是其中一种,这里只讲GCN,其他的后面有空再讨论。
GCN,图卷积神经网络,实际上跟CNN的作用一样,就是一个特征提取器,只不过它的对象是图数据。GCN精妙地设计了一种从图数据中提取特征的方法,从而让我们可以使用这些特征去对图数据进行节点分类(node classification)、图分类(graph classification)、边预测(link prediction),还可以顺便得到图的嵌入表示(graph embedding),可见用途广泛。因此现在人们脑洞大开,让GCN到各个领域中发光发热。
二、GCN长啥样,吓人吗
GCN的公式看起来还是有点吓人的,论文里的公式更是吓破了我的胆儿。但后来才发现,其实90%的内容根本不必理会,只是为了从数学上严谨地把事情给讲清楚,但是完全不影响我们的理解,尤其对于我这种“追求直觉,不求甚解”之人。
下面进入正题,我们直接看看GCN的核心部分是什么亚子:
假设我们手头有一批图数据,其中有N个节点(node),每个节点都有自己的特征,我们设这些节点的特征组成一个N×D维的矩阵X,然后各个节点之间的关系也会形成一个N×N维的矩阵A,也称为邻接矩阵(adjacency matrix)。X和A便是我们模型的输入。
GCN也是一个神经网络层,它的层与层之间的传播方式是:
这个公式中:
A波浪=A+I,I是单位矩阵 D波浪是A波浪的度矩阵(degree matrix),公式为 H是每一层的特征,对于输入层的话,H就是X σ是非线性激活函数
三、GCN为什么是这个亚子
只使用A的话,由于A的对角线上都是0,所以在和特征矩阵H相乘的时候,只会计算一个node的所有邻居的特征的加权和,该node自己的特征却被忽略了。因此,我们可以做一个小小的改动,给A加上一个单位矩阵I,这样就让对角线元素变成1了。
A是没有经过归一化的矩阵,这样与特征矩阵相乘会改变特征原本的分布,产生一些不可预测的问题。所以我们对A做一个标准化处理。首先让A的每一行加起来为1,我们可以乘以一个
,D就是度矩阵。我们可以进一步把 拆开与A相乘,得到一个对称且归一化的矩阵: 。
四、GCN有多牛
其他关于GCN的点滴:
对于很多网络,我们可能没有节点的特征,这个时候可以使用GCN吗?答案是可以的,如论文中作者对那个俱乐部网络,采用的方法就是用单位矩阵 I 替换特征矩阵 X。 我没有任何的节点类别的标注,或者什么其他的标注信息,可以使用GCN吗?当然,就如前面讲的,不训练的GCN,也可以用来提取graph embedding,而且效果还不错。 GCN网络的层数多少比较好?论文的作者做过GCN网络深度的对比研究,在他们的实验中发现,GCN层数不宜多,2-3层的效果就很好了。
(*本文为 AI科技大本营转载文章,转载请联系作者)
◆
精彩推荐
◆