其他
微信提出推荐中的深度反馈网络,在“看一看”数据集上达到SOTA
作者在本文中关注用户多种显式/隐式和正/负反馈信息,学习用户的无偏兴趣偏好。具体地,作者提出了一个Deep Feedback Network (DFN)模型,综合使用了用户的隐式正反馈(点击行为)、隐式负反馈(曝光但未点击的行为)以及显式负反馈(点击不感兴趣按钮行为)等信息。
DFN模型使用了internal feedback interaction component抓住用户行为序列中的细粒度的行为级别的交互,然后通过external feedback interaction component,使用精确但稀少的隐式正反馈和显式负反馈作为监督,从噪音较多的隐式负反馈中进一步抽取用户的正负反馈信息。在实验中,作者基于微信看一看的数据,进行了丰富的离线和在线实验,模型与baseline相比均取得显著提升。
推荐阅读
你点的每个“在看”,我都认真当成了AI
你点的每个“在看”,我都认真当成了AI