其他
Python 还能实现哪些 AI 游戏?附上代码一起来一把!
创新点:
优点:
缺点:
实验前的准备
1、游戏结构设定:
self.__initGame()
# 初始化一些变量
self.loseReward = -1
self.winReward = 1
self.hitReward = 0
self.paddleSpeed = 15
self.ballSpeed = (7, 7)
self.paddle_1_score = 0
self.paddle_2_score = 0
self.paddle_1_speed = 0.
self.paddle_2_speed = 0.
self.__reset()
'''
更新一帧
action: [keep, up, down]
'''
# 更新ball的位置
self.ball_pos = self.ball_pos[0] + self.ballSpeed[0], self.ball_pos[1] + self.ballSpeed[1]
# 获取当前场景(只取左半边)
image = pygame.surfarray.array3d(pygame.display.get_surface())
# image = image[321:, :]
pygame.display.update()
terminal = False
if max(self.paddle_1_score, self.paddle_2_score) >= 20:
self.paddle_1_score = 0
self.paddle_2_score = 0
terminal = True
return image, reward, terminal
def update_frame(self, action):
assert len(action) == 3
pygame.event.pump()
reward = 0
# 绑定一些对象
self.score1Render = self.font.render(str(self.paddle_1_score), True, (255, 255, 255))
self.score2Render = self.font.render(str(self.paddle_2_score), True, (255, 255, 255))
self.screen.blit(self.background, (0, 0))
pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect((5, 5), (630, 470)), 2)
pygame.draw.aaline(self.screen, (255, 255, 255), (320, 5), (320, 475))
self.screen.blit(self.paddle_1, self.paddle_1_pos)
self.screen.blit(self.paddle_2, self.paddle_2_pos)
self.screen.blit(self.ball, self.ball_pos)
self.screen.blit(self.score1Render, (240, 210))
self.screen.blit(self.score2Render, (370, 210))
'''
游戏初始化
'''
def __initGame(self):
pygame.init()
self.screen = pygame.display.set_mode((640, 480), 0, 32)
self.background = pygame.Surface((640, 480)).convert()
self.background.fill((0, 0, 0))
self.paddle_1 = pygame.Surface((10, 50)).convert()
self.paddle_1.fill((0, 255, 255))
self.paddle_2 = pygame.Surface((10, 50)).convert()
self.paddle_2.fill((255, 255, 0))
ball_surface = pygame.Surface((15, 15))
pygame.draw.circle(ball_surface, (255, 255, 255), (7, 7), (7))
self.ball = ball_surface.convert()
self.ball.set_colorkey((0, 0, 0))
self.font = pygame.font.SysFont("calibri", 40)
'''
重置球和球拍的位置
'''
def __reset(self):
self.paddle_1_pos = (10., 215.)
self.paddle_2_pos = (620., 215.)
self.ball_pos = (312.5, 232.5)
2、行动决策机制:
if action[0] == 1:
self.paddle_1_speed = 0
elif action[1] == 1:
self.paddle_1_speed = -self.paddleSpeed
elif action[2] == 1:
self.paddle_1_speed = self.paddleSpeed
self.paddle_1_pos = self.paddle_1_pos[0], max(min(self.paddle_1_speed + self.paddle_1_pos[1], 420), 10)
if self.ball_pos[0] >= 305.:
if not self.paddle_2_pos[1] == self.ball_pos[1] + 7.5:
if self.paddle_2_pos[1] < self.ball_pos[1] + 7.5:
self.paddle_2_speed = self.paddleSpeed
self.paddle_2_pos = self.paddle_2_pos[0], max(min(self.paddle_2_pos[1] + self.paddle_2_speed, 420), 10)
if self.paddle_2_pos[1] > self.ball_pos[1] - 42.5:
self.paddle_2_speed = -self.paddleSpeed
self.paddle_2_pos = self.paddle_2_pos[0], max(min(self.paddle_2_pos[1] + self.paddle_2_speed, 420), 10)
else:
self.paddle_2_pos = self.paddle_2_pos[0], max(min(self.paddle_2_pos[1] + 7.5, 420), 10)
# 行动ball
# 球撞拍上
if self.ball_pos[0] <= self.paddle_1_pos[0] + 10.:
if self.ball_pos[1] + 7.5 >= self.paddle_1_pos[1] and self.ball_pos[1] <= self.paddle_1_pos[1] + 42.5:
self.ball_pos = 20., self.ball_pos[1]
self.ballSpeed = -self.ballSpeed[0], self.ballSpeed[1]
reward = self.hitReward
if self.ball_pos[0] + 15 >= self.paddle_2_pos[0]:
if self.ball_pos[1] + 7.5 >= self.paddle_2_pos[1] and self.ball_pos[1] <= self.paddle_2_pos[1] + 42.5:
self.ball_pos = 605., self.ball_pos[1]
self.ballSpeed = -self.ballSpeed[0], self.ballSpeed[1]
# 拍未接到球(另外一个拍得分)
if self.ball_pos[0] < 5.:
self.paddle_2_score += 1
reward = self.loseReward
self.__reset()
elif self.ball_pos[0] > 620.:
self.paddle_1_score += 1
reward = self.winReward
self.__reset()
# 球撞墙上
if self.ball_pos[1] <= 10.:
self.ballSpeed = self.ballSpeed[0], -self.ballSpeed[1]
self.ball_pos = self.ball_pos[0], 10
elif self.ball_pos[1] >= 455:
self.ballSpeed = self.ballSpeed[0], -self.ballSpeed[1]
self.ball_pos = self.ball_pos[0], 455
获得初始化weight权重
'''
def init_weight_variable(self, shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.01))
'''
获得初始化bias权重
'''
def init_bias_variable(self, shape):
return tf.Variable(tf.constant(0.01, shape=shape))
'''
卷积层
'''
def conv2D(self, x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding="SAME")
'''
池化层
'''
def maxpool(self, x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
'''
计算损失
'''
def compute_loss(self, q_values, action_now, target_q_values):
tmp = tf.reduce_sum(tf.multiply(q_values, action_now), reduction_indices=1)
loss = tf.reduce_mean(tf.square(target_q_values - tmp))
return loss
'''
下一帧
'''
def next_frame(self, action_now, scene_now, gameState):
x_now, reward, terminal = gameState.update_frame(action_now)
x_now = cv2.cvtColor(cv2.resize(x_now, (80, 80)), cv2.COLOR_BGR2GRAY)
_, x_now = cv2.threshold(x_now, 127, 255, cv2.THRESH_BINARY)
x_now = np.reshape(x_now, (80, 80, 1))
scene_next = np.append(x_now, scene_now[:, :, 0:3], axis=2)
return scene_next, reward, terminal
'''
计算target_q_values
'''
def compute_target_q_values(self, reward_batch, q_values_batch, minibatch):
target_q_values = []
for i in range(len(minibatch)):
if minibatch[i][4]:
target_q_values.append(reward_batch[i])
else:
target_q_values.append(reward_batch[i] + self.gamma * np.max(q_values_batch[i]))
return target_q_values
self.options = options
self.num_action = options['num_action']
self.lr = options['lr']
self.modelDir = options['modelDir']
self.init_prob = options['init_prob']
self.end_prob = options['end_prob']
self.OBSERVE = options['OBSERVE']
self.EXPLORE = options['EXPLORE']
self.action_interval = options['action_interval']
self.REPLAY_MEMORY = options['REPLAY_MEMORY']
self.gamma = options['gamma']
self.batch_size = options['batch_size']
self.save_interval = options['save_interval']
self.logfile = options['logfile']
self.is_train = options['is_train']
'''
训练网络
'''
def train(self, session):
x, q_values_ph = self.create_network()
action_now_ph = tf.placeholder('float', [None, self.num_action])
target_q_values_ph = tf.placeholder('float', [None])
# 计算loss
loss = self.compute_loss(q_values_ph, action_now_ph, target_q_values_ph)
# 优化目标
trainStep = tf.train.AdamOptimizer(self.lr).minimize(loss)
# 游戏
gameState = PongGame()
# 用于记录数据
dataDeque = deque()
# 当前的动作
action_now = np.zeros(self.num_action)
action_now[0] = 1
# 初始化游戏状态
x_now, reward, terminal = gameState.update_frame(action_now)
x_now = cv2.cvtColor(cv2.resize(x_now, (80, 80)), cv2.COLOR_BGR2GRAY)
_, x_now = cv2.threshold(x_now, 127, 255, cv2.THRESH_BINARY)
scene_now = np.stack((x_now, )*4, axis=2)
# 读取和保存checkpoint
saver = tf.train.Saver()
session.run(tf.global_variables_initializer())
checkpoint = tf.train.get_checkpoint_state(self.modelDir)
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(session, checkpoint.model_checkpoint_path)
print('[INFO]: Load %s successfully...' % checkpoint.model_checkpoint_path)
else:
print('[INFO]: No weights found, start to train a new model...')
prob = self.init_prob
num_frame = 0
logF = open(self.logfile, 'a')
while True:
q_values = q_values_ph.eval(feed_dict={x: [scene_now]})
action_idx = get_action_idx(q_values=q_values,
prob=prob,
num_frame=num_frame,
OBSERVE=self.OBSERVE,
num_action=self.num_action)
action_now = np.zeros(self.num_action)
action_now[action_idx] = 1
prob = down_prob(prob=prob,
num_frame=num_frame,
OBSERVE=self.OBSERVE,
EXPLORE=self.EXPLORE,
init_prob=self.init_prob,
end_prob=self.end_prob)
for _ in range(self.action_interval):
scene_next, reward, terminal = self.next_frame(action_now=action_now,
scene_now=scene_now, gameState=gameState)
scene_now = scene_next
dataDeque.append((scene_now, action_now, reward, scene_next, terminal))
if len(dataDeque) > self.REPLAY_MEMORY:
dataDeque.popleft()
loss_now = None
if (num_frame > self.OBSERVE):
minibatch = random.sample(dataDeque, self.batch_size)
scene_now_batch = [mb[0] for mb in minibatch]
action_batch = [mb[1] for mb in minibatch]
reward_batch = [mb[2] for mb in minibatch]
scene_next_batch = [mb[3] for mb in minibatch]
q_values_batch = q_values_ph.eval(feed_dict={x: scene_next_batch})
target_q_values = self.compute_target_q_values(reward_batch, q_values_batch, minibatch)
trainStep.run(feed_dict={
target_q_values_ph: target_q_values,
action_now_ph: action_batch,
x: scene_now_batch
})
loss_now = session.run(loss, feed_dict={
target_q_values_ph: target_q_values,
action_now_ph: action_batch,
x: scene_now_batch
})
num_frame += 1
if num_frame % self.save_interval == 0:
name = 'DQN_Pong'
saver.save(session, os.path.join(self.modelDir, name), global_step=num_frame)
log_content = '<Frame>: %s, <Prob>: %s, <Action>: %s, <Reward>: %s, <Q_max>: %s, <Loss>: %s' % (str(num_frame), str(prob), str(action_idx), str(reward), str(np.max(q_values)), str(loss_now))
logF.write(log_content + '\n')
print(log_content)
logF.close()
'''
创建网络
'''
def create_network(self):
'''
W_conv1 = self.init_weight_variable([9, 9, 4, 16])
b_conv1 = self.init_bias_variable([16])
W_conv2 = self.init_weight_variable([7, 7, 16, 32])
b_conv2 = self.init_bias_variable([32])
W_conv3 = self.init_weight_variable([5, 5, 32, 32])
b_conv3 = self.init_bias_variable([32])
W_conv4 = self.init_weight_variable([5, 5, 32, 64])
b_conv4 = self.init_bias_variable([64])
W_conv5 = self.init_weight_variable([3, 3, 64, 64])
b_conv5 = self.init_bias_variable([64])
'''
W_conv1 = self.init_weight_variable([8, 8, 4, 32])
b_conv1 = self.init_bias_variable([32])
W_conv2 = self.init_weight_variable([4, 4, 32, 64])
b_conv2 = self.init_bias_variable([64])
W_conv3 = self.init_weight_variable([3, 3, 64, 64])
b_conv3 = self.init_bias_variable([64])
# 5 * 5 * 64 = 1600
W_fc1 = self.init_weight_variable([1600, 512])
b_fc1 = self.init_bias_variable([512])
W_fc2 = self.init_weight_variable([512, self.num_action])
b_fc2 = self.init_bias_variable([self.num_action])
# input placeholder
x = tf.placeholder('float', [None, 80, 80, 4])
'''
conv1 = tf.nn.relu(tf.layers.batch_normalization(self.conv2D(x, W_conv1, 4) + b_conv1, training=self.is_train, momentum=0.9))
conv2 = tf.nn.relu(tf.layers.batch_normalization(self.conv2D(conv1, W_conv2, 2) + b_conv2, training=self.is_train, momentum=0.9))
conv3 = tf.nn.relu(tf.layers.batch_normalization(self.conv2D(conv2, W_conv3, 2) + b_conv3, training=self.is_train, momentum=0.9))
conv4 = tf.nn.relu(tf.layers.batch_normalization(self.conv2D(conv3, W_conv4, 1) + b_conv4, training=self.is_train, momentum=0.9))
conv5 = tf.nn.relu(tf.layers.batch_normalization(self.conv2D(conv4, W_conv5, 1) + b_conv5, training=self.is_train, momentum=0.9))
flatten = tf.reshape(conv5, [-1, 1600])
'''
conv1 = tf.nn.relu(self.conv2D(x, W_conv1, 4) + b_conv1)
pool1 = self.maxpool(conv1)
conv2 = tf.nn.relu(self.conv2D(pool1, W_conv2, 2) + b_conv2)
conv3 = tf.nn.relu(self.conv2D(conv2, W_conv3, 1) + b_conv3)
flatten = tf.reshape(conv3, [-1, 1600])
fc1 = tf.nn.relu(tf.layers.batch_normalization(tf.matmul(flatten, W_fc1) + b_fc1, training=self.is_train, momentum=0.9))
fc2 = tf.matmul(fc1, W_fc2) + b_fc2
return x, fc2
作者简介:李秋键,CSDN博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap竞赛获奖等等。
利用 AssemblyAI 在 PyTorch 中建立端到端的语音识别模型 京东姚霆:推理能力,正是多模态技术未来亟需突破的瓶颈 性能超越最新序列推荐模型,华为诺亚方舟提出记忆增强的图神经网络 FPGA 无解漏洞 “StarBleed”轰动一时,今天来扒一下技术细节! 真惨!连各大编程语言都摆起地摊了 发送0.55 ETH花费近260万美元!这笔神秘交易引发大猜想