详解一道高频面试题:接雨水
The following article is from labuladong Author labuladong
(给算法爱好者加星标,修炼编程内功)
来源:labuladong
接雨水这道题目挺有意思,在面试题中出现频率还挺高的,本文就来步步优化,讲解一下这道题。
这道题目实际上出自 LeetCode:
就是用一个数组表示一个条形图,问你这个条形图最多能接多少水。
int trap(int[] height);
下面就来由浅入深介绍暴力解法 -> 备忘录解法 -> 双指针解法,在 O(N) 时间 O(1) 空间内解决这个问题。
一、核心思路
我第一次看到这个问题,无计可施,完全没有思路,相信很多朋友跟我一样。所以对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。
这么一想,可以发现这道题的思路其实很简单。具体来说,仅仅对于位置 i,能装下多少水呢?
能装 2 格水。为什么恰好是两格水呢?因为 height[i] 的高度为 0,而这里最多能盛 2 格水,2-0=2。
为什么位置 i 最多能盛 2 格水呢?因为,位置 i 能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为l_max
和r_max
;位置 i 最大的水柱高度就是min(l_max, r_max)
。
更进一步,对于位置 i,能够装的水为:
water[i] = min(
# 左边最高的柱子
max(height[0..i]),
# 右边最高的柱子
max(height[i..end])
) - height[i]
这就是本问题的核心思路,我们可以简单写一个暴力算法:
有之前的思路,这个解法应该是很直接粗暴的,时间复杂度 O(N^2),空间复杂度 O(1)。但是很明显这种计算r_max
和l_max
的方式非常笨拙,一般的优化方法就是备忘录。
二、备忘录优化
之前的暴力解法,不是在每个位置 i 都要计算r_max
和l_max
吗?我们直接把结果都缓存下来,别傻不拉几的每次都遍历,这时间复杂度不就降下来了嘛。
我们开两个数组r_max
和l_max
充当备忘录,l_max[i]
表示位置 i 左边最高的柱子高度,r_max[i]
表示位置 i 右边最高的柱子高度。预先把这两个数组计算好,避免重复计算:
这个优化其实和暴力解法差不多,就是避免了重复计算,把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。下面来看一个精妙一些的解法,能够把空间复杂度降低到 O(1)。
三、双指针解法
这种解法的思路是完全相同的,但在实现手法上非常巧妙,我们这次也不要用备忘录提前计算了,而是用双指针边走边算,节省下空间复杂度。
首先,看一部分代码:
int trap(vector<int>& height) {
int n = height.size();
int left = 0, right = n - 1;
int l_max = height[0];
int r_max = height[n - 1];
while (left <= right) {
l_max = max(l_max, height[left]);
r_max = max(r_max, height[right]);
left++; right--;
}
}
对于这部分代码,请问l_max
和r_max
分别表示什么意义呢?
很容易理解,l_max
是height[0..left]
中最高柱子的高度,r_max
是height[right..end]
的最高柱子的高度。
明白了这一点,直接看解法:
你看,其中的核心思想和之前一模一样,换汤不换药。但是细心的读者可能会发现次解法还是有点细节差异:
之前的备忘录解法,l_max[i]
和r_max[i]
代表的是height[0..i]
和height[i..end]
的最高柱子高度。
ans += min(l_max[i], r_max[i]) - height[i];
但是双指针解法中,l_max
和r_max
代表的是height[0..left]
和height[right..end]
的最高柱子高度。比如这段代码:
if (l_max < r_max) {
ans += l_max - height[left];
left++;
}
此时的l_max
是left
指针左边的最高柱子,但是r_max
并不一定是left
指针右边最高的柱子,这真的可以得到正确答案吗?
其实这个问题要这么思考,我们只在乎min(l_max, r_max)
。对于上图的情况,我们已经知道l_max < r_max
了,至于这个r_max
是不是右边最大的,不重要,重要的是height[i]
能够装的水只和l_max
有关。
对于 l_max > r_max 的情况也是类似的。
推荐阅读
(点击标题可跳转阅读)
觉得本文有帮助?请分享给更多人
关注「算法爱好者」加星标,修炼编程内功
好文章,我在看❤️