贪心算法:最小生成树
(给算法爱好者加星标,修炼编程内功)
来源:独酌逸醉
www.cnblogs.com/chinazhangjie/archive/2010/12/02/1894314.html
【前言】前几天发的《一文搞懂贪心算法》中提到了使用使用贪心算法来计算最短路问题,今天接着给大家分享下在最小生成树的两种算法中的贪心思想。
希望能对大家有所帮助。
设G = (V,E)是无向连通带权图,即一个网络。E中的每一条边(v,w)的权为c[v][w]。
如果G的子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。
生成树上各边权的总和称为生成树的耗费。在G的所有生成树中,耗费最小的生成树称为G的最小生成树。
构造最小生成树的两种方法:Prim算法和Kruskal算法。
一、最小生成树的性质
设G = (V,E)是连通带权图,U是V的真子集。如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中,(u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,它意(u,v)为其中一条边。这个性质有时也称为MST性质。
二、Prim算法
设G = (V,E)是连通带权图,V = {1,2,…,n}。构造G的最小生成树Prim算法的基本思想是:首先置S = {1},然后,只要S是V的真子集,就进行如下的贪心选择:选取满足条件i ∈S,j ∈V – S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S = V时为止。在这个过程中选取到的所有边恰好构成G的一棵最小生成树。
如下带权图:
生成过程:
1 -> 3 : 1
3 -> 6 : 4
6 -> 4: 2
3 -> 2 : 5
2 -> 5 : 3
实现:
#include <iostream>
#include <vector>
#include <limits>
using namespace std ;
struct TreeNode
{
public:
TreeNode (int nVertexIndexA = 0, int nVertexIndexB = 0, int nWeight = 0)
: m_nVertexIndexA (nVertexIndexA),
m_nVertexIndexB (nVertexIndexB),
m_nWeight (nWeight)
{ }
public:
int m_nVertexIndexA ;
int m_nVertexIndexB ;
int m_nWeight ;
} ;
class MST_Prim
{
public:
MST_Prim (const vector<vector<int> >& vnGraph)
{
m_nvGraph = vnGraph ;
m_nNodeCount = (int)m_nvGraph.size () ;
}
void DoPrim ()
{
// 是否被访问标志
vector<bool> bFlag (m_nNodeCount, false) ;
bFlag[0] = true ;
int nMaxIndexA ;
int nMaxIndexB ;
int j = 0 ;
while (j < m_nNodeCount - 1) {
int nMaxWeight = numeric_limits<int>::max () ;
// 找到当前最短路径
int i = 0 ;
while (i < m_nNodeCount) {
if (!bFlag[i]) {
++ i ;
continue ;
}
for (int j = 0; j < m_nNodeCount; ++ j) {
if (!bFlag[j] && nMaxWeight > m_nvGraph[i][j]) {
nMaxWeight = m_nvGraph[i][j] ;
nMaxIndexA = i ;
nMaxIndexB = j ;
}
}
++ i ;
}
bFlag[nMaxIndexB] = true ;
m_tnMSTree.push_back (TreeNode(nMaxIndexA, nMaxIndexB, nMaxWeight)) ;
++ j ;
}
// 输出结果
for (vector<TreeNode>::const_iterator ite = m_tnMSTree.begin() ;
ite != m_tnMSTree.end() ;
++ ite ) {
cout << (*ite).m_nVertexIndexA << "->"
<< (*ite).m_nVertexIndexB << " : "
<< (*ite).m_nWeight << endl ;
}
}
private:
vector<vector<int> > m_nvGraph ; // 无向连通图
vector<TreeNode> m_tnMSTree ; // 最小生成树
int m_nNodeCount ;
} ;
int main()
{
const int cnNodeCount = 6 ;
vector<vector<int> > graph (cnNodeCount) ;
for (size_t i = 0; i < graph.size() ; ++ i) {
graph[i].resize (cnNodeCount, numeric_limits<int>::max()) ;
}
graph[0][1]= 6 ;
graph[0][2] = 1 ;
graph[0][3] = 5 ;
graph[1][2] = 5 ;
graph[1][4] = 3 ;
graph[2][3] = 5 ;
graph[2][4] = 6 ;
graph[2][5] = 4 ;
graph[3][5] = 2 ;
graph[4][5] = 6 ;
graph[1][0]= 6 ;
graph[2][0] = 1 ;
graph[3][0] = 5 ;
graph[2][1] = 5 ;
graph[4][1] = 3 ;
graph[3][2] = 5 ;
graph[4][2] = 6 ;
graph[5][2] = 4 ;
graph[5][3] = 2 ;
graph[5][4] = 6 ;
MST_Prim mstp (graph) ;
mstp.DoPrim () ;
return 0 ;
}
三、Kruskal算法
当图的边数为e时,Kruskal算法所需的时间是O(eloge)。当e = Ω(n^2)时,Kruskal算法比Prim算法差;但当e = o(n^2)时,Kruskal算法比Prim算法好得多。
给定无向连同带权图G = (V,E),V = {1,2,...,n}。Kruskal算法构造G的最小生成树的基本思想是:
(1)首先将G的n个顶点看成n个孤立的连通分支。将所有的边按权从小大排序。(2)从第一条边开始,依边权递增的顺序检查每一条边。
并按照下述方法连接两个不同的连通分支:当查看到第k条边(v,w)时,如果端点v和w分别是当前两个不同的连通分支T1和T2的端点是,就用边(v,w)将T1和T2连接成一个连通分支,然后继续查看第k+1条边;如果端点v和w在当前的同一个连通分支中,就直接再查看k+1条边。
这个过程一个进行到只剩下一个连通分支时为止。此时,已构成G的一棵最小生成树。
Kruskal算法的选边过程:
1 -> 3 : 1
4 -> 6 : 2
2 -> 5 : 3
3 -> 4 : 4
2 -> 3 : 5
实现:
#include <iostream>
#include <vector>
#include <queue>
#include <limits>
using namespace std ;
struct TreeNode
{
public:
TreeNode (int nVertexIndexA = 0, int nVertexIndexB = 0, int nWeight = 0)
: m_nVertexIndexA (nVertexIndexA),
m_nVertexIndexB (nVertexIndexB),
m_nWeight (nWeight)
{ }
friend
bool operator < (const TreeNode& lth, const TreeNode& rth)
{
return lth.m_nWeight > rth.m_nWeight ;
}
public:
int m_nVertexIndexA ;
int m_nVertexIndexB ;
int m_nWeight ;
} ;
// 并查集
class UnionSet
{
public:
UnionSet (int nSetEleCount)
: m_nSetEleCount (nSetEleCount)
{
__init() ;
}
// 合并i,j。如果i,j同在集合中,返回false。否则返回true
bool Union (int i, int j)
{
int ifather = __find (i) ;
int jfather = __find (j) ;
if (ifather == jfather )
{
return false ;
// copy (m_nvFather.begin(), m_nvFather.end(), ostream_iterator<int> (cout, " "));
// cout << endl ;
}
else
{
m_nvFather[jfather] = ifather ;
// copy (m_nvFather.begin(), m_nvFather.end(), ostream_iterator<int> (cout, " "));
// cout << endl ;
return true ;
}
}
private:
// 初始化并查集
int __init()
{
m_nvFather.resize (m_nSetEleCount) ;
for (vector<int>::size_type i = 0 ;
i < m_nSetEleCount;
++ i )
{
m_nvFather[i] = static_cast<int>(i) ;
// cout << m_nvFather[i] << " " ;
}
// cout << endl ;
return 0 ;
}
// 查找index元素的父亲节点 并且压缩路径长度
int __find (int nIndex)
{
if (nIndex == m_nvFather[nIndex])
{
return nIndex;
}
return m_nvFather[nIndex] = __find (m_nvFather[nIndex]);
}
private:
vector<int> m_nvFather ; // 父亲数组
vector<int>::size_type m_nSetEleCount ; // 集合中结点个数
} ;
class MST_Kruskal
{
typedef priority_queue<TreeNode> MinHeap ;
public:
MST_Kruskal (const vector<vector<int> >& graph)
{
m_nNodeCount = static_cast<int>(graph.size ()) ;
__getMinHeap (graph) ;
}
void DoKruskal ()
{
UnionSet us (m_nNodeCount) ;
int k = 0 ;
while (m_minheap.size() != 0 && k < m_nNodeCount - 1)
{
TreeNode tn = m_minheap.top () ;
m_minheap.pop () ;
// 判断合理性
if (us.Union (tn.m_nVertexIndexA, tn.m_nVertexIndexB))
{
m_tnMSTree.push_back (tn) ;
++ k ;
}
}
// 输出结果
for (size_t i = 0; i < m_tnMSTree.size() ; ++ i)
{
cout << m_tnMSTree[i].m_nVertexIndexA << "->"
<< m_tnMSTree[i].m_nVertexIndexB << " : "
<< m_tnMSTree[i].m_nWeight
<< endl ;
}
}
private:
void __getMinHeap (const vector<vector<int> >& graph)
{
for (int i = 0; i < m_nNodeCount; ++ i)
{
for (int j = 0; j < m_nNodeCount; ++ j)
{
if (graph[i][j] != numeric_limits<int>::max())
{
m_minheap.push (TreeNode(i, j, graph[i][j])) ;
}
}
}
}
private:
vector<TreeNode> m_tnMSTree ;
int m_nNodeCount ;
MinHeap m_minheap ;
} ;
int main ()
{
const int cnNodeCount = 6 ;
vector<vector<int> > graph (cnNodeCount) ;
for (size_t i = 0; i < graph.size() ; ++ i)
{
graph[i].resize (cnNodeCount, numeric_limits<int>::max()) ;
}
graph[0][1]= 6 ;
graph[0][2] = 1 ;
graph[0][3] = 3 ;
graph[1][2] = 5 ;
graph[1][4] = 3 ;
graph[2][3] = 5 ;
graph[2][4] = 6 ;
graph[2][5] = 4 ;
graph[3][5] = 2 ;
graph[4][5] = 6 ;
graph[1][0]= 6 ;
graph[2][0] = 1 ;
graph[3][0] = 3 ;
graph[2][1] = 5 ;
graph[4][1] = 3 ;
graph[3][2] = 5 ;
graph[4][2] = 6 ;
graph[5][2] = 4 ;
graph[5][3] = 2 ;
graph[5][4] = 6 ;
MST_Kruskal mst (graph);
mst.DoKruskal () ;
}
- EOF -
1、一文搞懂贪心算法
3、三种洗牌算法简介
觉得本文有帮助?请分享给更多人
推荐关注「算法爱好者」,修炼编程内功
点赞和在看就是最大的支持❤️