其他
理解并统一 14 种归因算法,让神经网络具有可解释性
↓推荐关注↓
转自:机器之心
本文提出了统一解释 14 种输入单元重要性归因算法的内在机理,并提出评价归因算法可靠性的三大准则。
第一,在众多经验性归因算法充斥可解释机器学习领域的环境下,我们希望证明 “所有 14 种归因算法(解释神经网络输入单元重要性的算法)的内在机理,都可以表示为对神经网络所建模的交互效用的一种分配,不同归因算法对应不同的交互效用分配比例”。这样,虽然不同算法有着完全不同的设计着眼点(比如有些算法有提纲挈领的目标函数,有些算法则是纯粹的 pipeline),但是我们发现在数学上,这些算法都可以被我们纳入到 “对交互效用的分配” 的叙事逻辑中来。 基于上面的交互效用分配框架,我们可以进一步为神经网络输入单元重要性归因算法提出三条评估准则,来衡量归因算法所预测的输入单元重要性值是否合理。
- EOF -
觉得本文有帮助?请分享给更多人
推荐关注「算法爱好者」,修炼编程内功
点赞和在看就是最大的支持❤️