查看原文
其他

人教版六年级数学下册第6单元《数的认识》图文讲解、微课视频、同步练习(P72-75)

预习关注👉 预习网 2021-05-10

      预 习 网

在家预习就上预习网


大家好!预习网将打造中小学生在家预习的微课平台,推出——“小学数学教材同步微课堂(包括知识要点、视频教学、图文解读和巩固练习)”,欢迎分享+转发+收藏哦~

课本再现

点击图片,查看大图

▼▼▼▼

视频课堂

知识点讲解

一、概念

(一)整 数

1.自然数、负数和整数

(1)自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。  

一个物体也没有,用0表示。0也是自然数。  

1是自然数的基本单位,任何一个自然数都是由若干个1组成。 0是最小的自然数,没有最大的自然数

 

(2)负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。

 正整数(1、2、3、4、……)

(3) 整数:

零 (0既不是正数,也不是负数)                                         

负整数(-1、-2、-3、-4……)

 

2、零的作用

(1)表示数位。读写数时,某个单位上一个单位也没有,就用0表示。

(2)占位作用。

(3)作为界限。如“零上温度与零下温度的界限”。

 

3、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

 

5、数的整除 :整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。  

(1)如果数a能被数b(b ≠ 0)整除,

a就叫做b的倍数,

b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

如:因为35能被7整除,所以35是7的倍数,7是35的因数。  

(2)一个数的因数的个数是有限的,

其中最小的约数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。

 

(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。

如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

 

(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。  

(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。  

(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,

例如:12、108、204都能被3整除。

(7)一个数各位数上的和能被9整除,这个数就能被9整除。 

(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

(9)一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

(10)一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。  

(11)能被2整除的数叫做偶数。  

不能被2整除的数叫做奇数。  

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

(12)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

(13)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

例如 4、6、8、9、12都是合数。

(14)1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。  

(15)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

例如15=3×5,3和5 叫做15的质因数。  

(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如:把28分解质因数

(17)几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公约数。

例如:

12的约数有1、2、3、4、6、12;  

18的约数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。

(18)公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

①1和任何自然数互质。  

②相邻的两个自然数互质。  

③两个不同的质数互质。

④当合数不是质数的倍数时,这个合数和这个质数互质。

⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

⑥如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。  

⑦如果两个数是互质数,它们的最大公约数就是1。  

(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,

如:

的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 ……

其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。  

①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。  

③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

 

(二)小数

1 、小数的意义  

(1)把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。  

(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……  

(3)一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。  

(4)在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。  

2、小数的分类  

(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。  

(2)带小数:整数部分不是零的小数,叫做带小数。

例如:3.25 、 5.26 都是带小数。

(3)有限小数:小数部分的数位是有限的小数,叫做有限小数。

例如:41.7 、 25.3 、 0.23 都是有限小数。

(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如:4.33 …… 3.1415926 ……

(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π

(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 …… 0.0333 …… 12.109109 ……  

(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。  

(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

    例如:3.111 …… 0.5656 ……  

(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

例如:3.1222 …… 0.03333 ……

(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有 一个数字,就只在它的上面点一个点。

例如:3.777 …… 简写作:3.7(•) ;  0.5302302 …… 简写作:0.53(•)02(•)  。

 

(三)分数

1、分数的意义  

(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。  

(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。  

(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。  

2、分数的分类  

真分数:分子比分母小的分数叫做真分数。真分数小于1。  

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。  

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。  

3、约分和通分  

把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。  

分子分母是互质数的分数,叫做最简分数。  

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。  

 

(四)百分数 :

表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。

百分数通常用"%"来表示。百分号是表示百分数的符号。

 

二 、方法

(一)数的读法和写法   

1、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。   

 

2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。  

 

3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。  

 

4、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

 

5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。  

 

6、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。  

 

7、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。  

 

8、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  

(二)数的改写  

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。  

1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。

例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位 的数 12.543 亿。  

 

2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015 省略亿后面的尾数是 13 亿。

 

3、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

  

4、大小比较  

(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。  

(2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……  

(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。  

 

(三)数的互化  

1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。  

2、分数化成小数:用分母去除以分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。  

3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。  

4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。  

5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。  

6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。  

7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。  

 

(四)数的整除  

1、把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。  

2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。  

3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。  

4、成为互质关系的两个数:1和任何自然数互质 ;相邻的两个自然数互质;  当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

  

(五)约分和通分  

(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。  

(2)通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。


三、性质和规律

(一)商不变的规律  

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。  

(二)小数的性质  

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。  

(三)小数点位置的移动引起小数大小的变化

1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……  

2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……  

3、小数点向左移或者向右移位数不够时,要用“0"补足位。  

(四)分数的基本性质  

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。  

(五)分数与除法的关系

1、被除数÷除数= 商       

2、因为零不能作除数,所以分数的分母不能为零。  

3、被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。  

书本练习参考答案

图文解读

点击图片,查看大图

▼▼▼▼

数的读写、改写、大小比较

同步练习一及答案


同步练习二及答案



——END——

资料来源:网络等,好的资源值得分享,如有侵权请联系删除。综合整理:预习网

第一单元

《负数的认识》(P1-4)

《负数的实际应用》(P5-7)

第二单元

《折扣》(P8)

《成数》(P9)

《税率》(P10)

《利率》(P11)

《解决问题》(P12-16)

第三单元

《圆柱的认识》(P17-20)

《圆柱的表面积》(P21-24)

《圆柱的体积》(P25-30)

《圆锥的认识》(P31-32)

《圆锥的体积》(P33-36)

《整理和复习》(P37-39)

第四单元

《比例的意义》(P40)

《比例的基本性质》(P41)

《解比例》(P42-44)

《正比例》(P45-46)

《反比例》(P47-52)

《认识比例尺》(P53)

《比例尺的应用》(P54)

《用比例尺绘制平面图》(P55-58)

《图形的放大与缩小》(P59-60)

《用比例解决问题(1)》(P61)

《用比例解决问题(2)》(P62-64)

《整理和复习》(P65-66)

《自行车里的数学》(P67)

《鸽巢原理》(P68-69)

《鸽巢问题的应用》(P70-71)

(更多资料请关注公众号后查看)

👇点击阅读原文进入1-6年数学微课全集

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存