其他
技术文档丨Apollo 6.0的融合组件分析
流程图 / 组织架构图
方法解读
部分重要结构体解读
FusionComponentConfig comp_config;
if (!GetProtoConfig(&comp_config)) {
return false;
}
AINFO << "Fusion Component Configs: " << comp_config.DebugString();
// to load component configs
fusion_method_ = comp_config.fusion_method(); // 融合方法
fusion_main_sensor_ = comp_config.fusion_main_sensor(); // 融合主传感器
object_in_roi_check_ = comp_config.object_in_roi_check(); // 是否过滤障碍物
radius_for_roi_object_check_ = comp_config.radius_for_roi_object_check(); // 读取地图的大小,用于过滤障碍物?
// init algorithm plugin
ACHECK(InitAlgorithmPlugin()) << "Failed to init algorithm plugin."; //初始化融合模块和地图模块
writer_ = node_->CreateWriter<PerceptionObstacles>(
comp_config.output_obstacles_channel_name()); // ?两个Writer可能是记录日志用
inner_writer_ = node_->CreateWriter<SensorFrameMessage>(
comp_config.output_viz_fused_content_channel_name()); // 这个Writer用于可视化
return true;
}
bool FusionComponent::InitAlgorithmPlugin() {
fusion_.reset(new fusion::ObstacleMultiSensorFusion());
fusion::ObstacleMultiSensorFusionParam param;
param.main_sensor = fusion_main_sensor_;
param.fusion_method = fusion_method_;
ACHECK(fusion_->Init(param)) << "Failed to init ObstacleMultiSensorFusion"; // 初始化融合模块
if (FLAGS_obs_enable_hdmap_input && object_in_roi_check_) { // 判断(1)高精地图准备好了? 且 (2)开启障碍物过滤
hdmap_input_ = map::HDMapInput::Instance();
ACHECK(hdmap_input_->Init()) << "Failed to init hdmap input."; // 初始化高精地图
}
AINFO << "Init algorithm successfully, onboard fusion: " << fusion_method_;
return true;
}
2、Proc函数:
bool FusionComponent::Proc(const std::shared_ptr<SensorFrameMessage>& message) { if (message->process_stage_ == ProcessStage::SENSOR_FUSION) { // 状态机?return true; } std::shared_ptr<PerceptionObstacles> out_message(new (std::nothrow) PerceptionObstacles); std::shared_ptr<SensorFrameMessage> viz_message(new (std::nothrow) SensorFrameMessage); bool status = InternalProc(message, out_message, viz_message); // 下面详述 if (status) { // TODO(conver sensor id) if (message->sensor_id_ != fusion_main_sensor_) { //是主传感器才给writer传送数据 AINFO << "Fusion receive from " << message->sensor_id_ << "not from " << fusion_main_sensor_ << ". Skip send."; } else { // Send("/apollo/perception/obstacles", out_message); writer_->Write(out_message); // Write(log)输出数据和可视化数据 AINFO << "Send fusion processing output message."; // send msg for visualization if (FLAGS_obs_enable_visualization) { // Send("/apollo/perception/inner/PrefusedObjects", viz_message); inner_writer_->Write(viz_message); } } } return status;}
bool FusionComponent::InternalProc(
const std::shared_ptr<SensorFrameMessage const>& in_message,
std::shared_ptr<PerceptionObstacles> out_message,
std::shared_ptr<SensorFrameMessage> viz_message) {
{
std::unique_lock<std::mutex> lock(s_mutex_); //锁
s_seq_num_++;
}
PERF_BLOCK_START();
const double timestamp = in_message->timestamp_; //时间戳
const uint64_t lidar_timestamp = in_message->lidar_timestamp_; //lidar时间戳
std::vector<base::ObjectPtr> valid_objects;
if (in_message->error_code_ != apollo::common::ErrorCode::OK) { // 1 有错误时:
if (!MsgSerializer::SerializeMsg( // 1.1 尝试生成PerceptionObstacles物体
timestamp, lidar_timestamp, in_message->seq_num_, valid_objects,
in_message->error_code_, out_message.get())) {
AERROR << "Failed to gen PerceptionObstacles object.";
return false;
}
if (FLAGS_obs_enable_visualization) { // 1.2 尝试生成可视化消息
viz_message->process_stage_ = ProcessStage::SENSOR_FUSION;
viz_message->error_code_ = in_message->error_code_;
}
AERROR << "Fusion receive message with error code, skip it.";
return true;
}
base::FramePtr frame = in_message->frame_; //抽取SensorFrameMessage中的Frame数据
frame->timestamp = in_message->timestamp_; //更新时间戳 ?为什么要在这儿更新?in_message->timestamp_貌似也不是动态变化的呀。。。
std::vector<base::ObjectPtr> fused_objects;
if (!fusion_->Process(frame, &fused_objects)) { // 2 调用Process函数
AERROR << "Failed to call fusion plugin.";
return false;
}
PERF_BLOCK_END_WITH_INDICATOR("fusion_process", in_message->sensor_id_); // 融合结束
if (in_message->sensor_id_ != fusion_main_sensor_) { // 3 如果不是主传感器帧,融合后就直接返回。
return true;
}
Eigen::Matrix4d sensor2world_pose =
in_message->frame_->sensor2world_pose.matrix(); // 4 主帧的sensor2world_pose.matrix()
if (object_in_roi_check_ && FLAGS_obs_enable_hdmap_input) { // 5 有高精地图且允许地图过滤障碍物
// get hdmap
base::HdmapStructPtr hdmap(new base::HdmapStruct());
if (hdmap_input_) { // 6 地图已载入
base::PointD position;
position.x = sensor2world_pose(0, 3); // 6.1 主传感器在世界(地图)坐标系的位置
position.y = sensor2world_pose(1, 3);
position.z = sensor2world_pose(2, 3);
hdmap_input_->GetRoiHDMapStruct(position, radius_for_roi_object_check_, // 6.2 获得主传感器周围的地图
hdmap);
// TODO(use check)
// ObjectInRoiSlackCheck(hdmap, fused_objects, &valid_objects); // 6.3 地图检查或者过滤障碍物未实现
valid_objects.assign(fused_objects.begin(), fused_objects.end());
} else {
valid_objects.assign(fused_objects.begin(), fused_objects.end());
}
} else {
valid_objects.assign(fused_objects.begin(), fused_objects.end()); // 7 拷贝一份到融合数据到valid_objects
}
PERF_BLOCK_END_WITH_INDICATOR("fusion_roi_check", in_message->sensor_id_);// 高精地图检查结束
// produce visualization msg
if (FLAGS_obs_enable_visualization) { // 8 填充可视化数据
viz_message->timestamp_ = in_message->timestamp_;
viz_message->seq_num_ = in_message->seq_num_;
viz_message->frame_ = base::FramePool::Instance().Get(); //8.1 与调度/cyber/sceduler/sceduler_factory.cc相关,暂时不管
viz_message->frame_->sensor2world_pose =
in_message->frame_->sensor2world_pose;
viz_message->sensor_id_ = in_message->sensor_id_;
viz_message->hdmap_ = in_message->hdmap_;
viz_message->process_stage_ = ProcessStage::SENSOR_FUSION; //8.2 更新处理阶段
viz_message->error_code_ = in_message->error_code_;
viz_message->frame_->objects = fused_objects; //8.3 更新融合障碍物
}
// produce pb output msg
apollo::common::ErrorCode error_code = apollo::common::ErrorCode::OK;
if (!MsgSerializer::SerializeMsg(timestamp, lidar_timestamp, // 9 将融合结果valid_objects序列化
in_message->seq_num_, valid_objects,
error_code, out_message.get())) {
AERROR << "Failed to gen PerceptionObstacles object.";
return false;
}
PERF_BLOCK_END_WITH_INDICATOR("fusion_serialize_message", // 序列化结束
in_message->sensor_id_);
const double cur_time = ::apollo::cyber::Clock::NowInSeconds(); //10 获得当前时间和延时,输出时间信息和障碍物个数
const double latency = (cur_time - timestamp) * 1e3;
AINFO << std::setprecision(16) << "FRAME_STATISTICS:Obstacle:End:msg_time["
<< timestamp << "]:cur_time[" << cur_time << "]:cur_latency[" << latency
<< "]:obj_cnt[" << valid_objects.size() << "]";
AINFO << "publish_number: " << valid_objects.size() << " obj";
return true;
}
class SensorFrameMessage {
public:
SensorFrameMessage() { type_name_ = "SensorFrameMessage"; }
~SensorFrameMessage() = default;
std::string GetTypeName() { return type_name_; }
SensorFrameMessage* New() const { return new SensorFrameMessage; }
public:
apollo::common::ErrorCode error_code_ = apollo::common::ErrorCode::OK; //错误码,用于功能安全
std::string sensor_id_; //传感器id号
double timestamp_ = 0.0; //时间戳
uint64_t lidar_timestamp_ = 0; //?lidar UTC时间。主帧是lidar,用硬件触发,所以记录一下?
uint32_t seq_num_ = 0; //第几帧
std::string type_name_; //?类型名称
base::HdmapStructConstPtr hdmap_; //高精地图
base::FramePtr frame_; //Frame 数据 (/perception/base/frame.h)
ProcessStage process_stage_ = ProcessStage::UNKNOWN_STAGE; // 处理阶段,枚举见下方
};
enum class ProcessStage {
LIDAR_PREPROCESS = 0,
LIDAR_SEGMENTATION = 1,
LIDAR_RECOGNITION = 2,
STEREO_CAMERA_DETECTION = 3,
MONOCULAR_CAMERA_DETECTION = 4,
LONG_RANGE_RADAR_DETECTION = 5,
SHORT_RANGE_RADAR_DETECTION = 6,
ULTRASONIC_DETECTION = 7,
SENSOR_FUSION = 8,
UNKNOWN_STAGE = 9,
PROCESSSTAGE_COUNT = 10,
LIDAR_DETECTION = 11
};
export default class PerceptionObstacles {
constructor() { //这里仅贴一个构造方法
this.textRender = new Text3D();
this.arrows = []; // for indication of direction of moving obstacles
this.ids = []; // for obstacle id labels
this.solidCubes = []; // for obstacles with only length/width/height
this.dashedCubes = []; // for obstacles with only length/width/height
this.extrusionSolidFaces = []; // for obstacles with polygon points
this.extrusionDashedFaces = []; // for obstacles with polygon points
this.laneMarkers = []; // for lane markers
this.icons = [];
this.trafficCones = []; // for traffic cone meshes
this.v2xCubes = [];
this.v2xSolidFaces = [];
this.arrowIdx = 0;
this.cubeIdx = 0;
this.extrusionFaceIdx = 0;
this.iconIdx = 0;
this.trafficConeIdx = 0;
this.v2xCubeIdx = 0;
this.v2xSolidFaceIdx = 0;
}
*《Apollo 6.0的融合组件分析》
https://blog.csdn.net/lcc47251/article/details/116597936
以上便是“Apollo 6.0的融合组件分析”的全部内容,如果大家对Apollo开发套件感兴趣,可以关注添加『Apollo小哥哥』(微信号:apollo_xzs)为好友,进入技术交流群,跟开发者们一起讨论哦。