其他
仅用61行代码,你也能从零训练大模型
👉腾小云导读
本文并非基于微调训练模型,而是从头开始训练出一个全新的大语言模型的硬核教程。看完本篇,你将了解训练出一个大模型的环境准备、数据准备,生成分词,模型训练、测试模型等环节分别需要做什么。AI 小白友好~文中代码可以直接实操运行。欢迎阅读体验。👉目录
1 准备训练环境
2 准备训练数据
3 训练分词器
4 训练模型
5 测试模型
6 完整代码
本文以代码为主,运行代码需要 Python 环境。
01
|
tokenizers==0.13.3
torch==2.0.1
transformers==4.30.
02
03
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.normalizers import NFKC, Sequence
from tokenizers.pre_tokenizers import ByteLevel
from tokenizers.decoders import ByteLevel as ByteLevelDecoder
from transformers import GPT2TokenizerFast
# 构建分词器 GPT2 基于 BPE 算法实现
tokenizer = Tokenizer(BPE(unk_token="<unk>"))
tokenizer.normalizer = Sequence([NFKC()])
tokenizer.pre_tokenizer = ByteLevel()
tokenizer.decoder = ByteLevelDecoder()
special_tokens = ["<s>","<pad>","</s>","<unk>","<mask>"]
trainer = BpeTrainer(vocab_size=50000, show_progress=True, inital_alphabet=ByteLevel.alphabet(), special_tokens=special_tokens)
# 创建 text 文件夹,并把 sanguoyanyi.txt 下载,放到目录里
files = ["text/sanguoyanyi.txt"]
# 开始训练了
tokenizer.train(files, trainer)
# 把训练的分词通过GPT2保存起来,以方便后续使用
newtokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer)
newtokenizer.save_pretrained("./sanguo")
运行时显示如下图:
成功运行代码后,我们在 sanguo 目录生成如下文件:
merges.txt
special_tokens_map.json
tokenizer.json
tokenizer_config.json
vocab.json
04
from transformers import GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
# 加载分词器
tokenizer = GPT2Tokenizer.from_pretrained("./sanguo")
tokenizer.add_special_tokens({
"eos_token": "</s>",
"bos_token": "<s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>"
})
# 配置GPT2模型参数
config = GPT2Config(
vocab_size=tokenizer.vocab_size,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# 创建模型
model = GPT2LMHeadModel(config)
# 训练数据我们用按行分割
from transformers import LineByLineTextDataset
dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path="./text/sanguoyanyi.txt",
block_size=32,
# 如果训练时你的显存不够
# 可以适当调小 block_size
)
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False, mlm_probability=0.15
)
from transformers import Trainer, TrainingArguments
# 配置训练参数
training_args = TrainingArguments(
output_dir="./output",
overwrite_output_dir=True,
num_train_epochs=20,
per_gpu_train_batch_size=16,
save_steps=2000,
save_total_limit=2,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
trainer.train()
# 保存模型
model.save_pretrained('./sanguo')
成功运行代码,我们发现 sanguo 目录下面多了三个文件:
config.json
generation_config.json
pytorch_model.bin
现在我们就成功生成训练出基于《三国演义》的一个大语言模型。
05
from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='./sanguo')
set_seed(42)
txt = generator("吕布", max_length=10)
print(txt)
txt = generator("接着奏乐", max_length=10)
print(txt)
06
以下是完整代码,代码地址:
https://github.com/xinzhanguo/hellollm/blob/main/sanguo.py
linux 中运行方法:
# 创建环境
python3 -m venv ~/.env
# 加载环境
source ~/.env/bin/activate
# 下载代码
git clone git@github.com:xinzhanguo/hellollm.git
cd hellollm
# 安装依赖
pip install -r requirements.txt
# 运行代码
python sanguo.py
以上我们就完成一个全新的模型训练。代码去除注释空行总共61行。
本文代码模型是基于 GPT2 的,当然你也可以基于 LLama 或者 Bert 等模型去实现全新的大语言模型。
代码虽然不是很多,但是如果初次尝试运行的话你也许会遇到很多问题,比如环境搭建。为了避免其他烦恼,我建议用 docker 方式运行代码:
# 下载代码
git clone git@github.com:xinzhanguo/hellollm.git
cd hellollm
# 编译镜像
docker build -t hellollm:beta .
# 可以选择以GPU方式运行
# docker run -it --gpus all hellollm:beta sh
docker run -it hellollm:beta sh
python sanguo.py
🌟号外福利
分享本文到朋友圈并截图,在公众号后台回复【61】,即可参与马克杯抽奖(3个名额)。
*福利抽奖截至2023.7.26中午12:00
AIGC 知识专题持续更新中...
关注并星标腾讯云开发者
第一时间看鹅厂技术与 AIGC 实用技巧