其他
第一张对数表是怎样制作出来的
我们把底再缩小一点试一下,取(1+1/2)10000作为底。
从以上几张表我们可以发现,我们取的底应该是一个指数形式,指数是一个比较大的数,如10000,而底越接近1,真数这一列的间隔就越小。
我们发现这张表已经满足我们前面提出的要求了:真数和对数都按照单调增加的序列排列,而且间隔都非常小。
从以上讨论可以得出这样的结论:为了造第一张对数表时便于计算,必须取形如(1+1/n)n的数为底,其中n为一个较大的整数,如n=1000,10000等,n越大,所造的表越精确。
别尔基造的对数表就是用数1.000110000做底的,这张表在1620年出版,称为“算术级数和几何级数表”。别尔基从1603年到1611年共用了八年的时间来造表,为什么要用这么多时间呢?你们可以想一下,表中对数的间隔是0.0001,从0到1就要计算10000个真数的值。制作整个对数表,别尔基总共做了230,000,000个以上的数依次乘以1.0001的乘法计算。
别尔基造的对数表没有得到广泛的推广,因为在1620年,纳皮尔出版了比别尔基造的表完善得多的对数表,称为“珍奇对数表”。纳皮尔的对数表是以1.00000011000000做底的,因此更加精确。为了制作这张表,纳皮尔用了20年的时间。
随着牛顿(Newton,1643-1727)和莱布尼兹(Leibniz,1646-1716)创立了微积分,柯西(Cauchy,1789-1857)和魏尔斯特拉斯(Weierstrass,1815-1897)等人奠定了微积分的基础,建立了严格的极限理论,人们发现当n无限增加时,数列(1+1/n)n极限存在,这个极限是一个无理数,等于2.71828182845……,数学家把这个数用字母e来表示,是为了纪念伟大的瑞士数学家欧拉(Euler,1707-1783)。但为了纪念纳皮尔,这个数也叫作“纳皮尔数”。
因此,现在用的对数有两种,一种叫自然对数,它以数e为底,另一种叫常用对数,它以10为底。