查看原文
其他

纳/微米材料及器件的生物医学应用虚拟专辑代表性论文4:金纳米颗粒单层和多层细胞模型在纳-微界面上相互作用的尺寸依赖性

纳微快报 nanomicroletters 2022-05-03

【引言】



摘要

金纳米颗粒已成为癌症治疗领域的新型工具,例如用作放射性治疗的辐射剂量促进剂以及化疗抗癌的药物载体。然而金纳米颗粒治疗的有效性取决于它是否能穿透癌细胞组织。单层细胞对于小尺寸金纳米颗粒的吸收性低于大尺寸金纳米颗粒,而多层组织型细胞的情况则相反。Ryerson University的Devika B. Chithrani等人研究了模拟血管瘤环境下,金纳米颗粒与组织型多层细胞的界面相互作用,首次实现对纳米颗粒穿透癌细胞组织的成像并分析了金纳米颗粒的传输机制。

撰写的综述发表于Nano-Micro Letters上2016年第8卷第1期. 



全文链接
文章引用信息:

Darren Yohan . Charmainne Cruje . Xiaofeng Lu . Devika B. Chithrani,Size-Dependent Gold Nanoparticle Interaction at Nano–Micro Interface Using Both Monolayer and Multilayer (Tissue-Like) Cell Models,Nano-Micro Lett. Nano-Micro Lett. (2016) 8(1):44-53, http://dx.doi:10.1007/s40820-015-0060-6



【图文导读】



Fig. 1 Schematic explaining the size dependency of NP transport in monolayer versus multilayer. (a) Cellular uptake of smaller NPs is lower at monolayer level. (b) Larger GNPs have greater cell uptake than smaller GNPs at the monolayer level. (c) Smaller GNPs have better penetration in the multilayer tissue than larger GNPs. (d) Larger GNPs exhibit limited penetration through ECM


Fig. 2 Characterization of GNPs. (a), (b), (c) The dark-field hyperspectral image, mapped image using the reference spectra marked in red in (c), and reflectance spectra of GNPs of size 20 nm, respectively. (d), (e), (f) The dark-field hyperspectral image, mapped image using the reference spectra marked in red in (f), and reflectance spectra of GNPs of size 50 nm, respectively. (Color figure online)


Fig. 3 Growth of MCL structures. (a) General principles of MCL growth involve seeding monolayer cells onto a semi-permeable membrane for growth. (b) The basic MCL growth setup showing the insert suspended in stirred media. (c) TEM image of the MCL tissue.( d), (e) Unstained and stained images of MCL tissue cross sections, respectively


Fig. 4 Monolayer uptake of GNPs. (a) The hyperspectral image of cells internalized with 20 nm sized GNPs. Bright dots represent GNP clusters localized within cells. (b) GNP clusters within the cells were mapped using one of the reflectance spectra of GNPs. (c) The hyperspectral image of cells internalized with 50 nm sized GNPs. Bright dots represent GNP clusters localized within cells. (d) GNP clusters within cells were mapped using the reflectance spectrum of GNPs. (e) The GNP uptake per cell for 20 and 50 nm GNPs across both cell lines.( f), (g) The reflectance spectra for the 20 and 50 nm GNPs in the monolayer cell samples are shown in (a, c)


Fig. 5 Penetration of GNPs of different sizes in tissue-like MLC structures. (a) The quantitative determination of the penetration of GNPs in MCLs for the 20 size GNPs in MDA-MB-231 and MCF-7 cells.( b), (c) Dark-field images showing penetration of 20 nm GNPs through MDA-MB- 231 and MCF-7 tissues, respectively. (d) The quantitative determination of the penetration of GNPs in MCLs for the 50 size GNPs in MDA-MB- 231 and MCF-7 cells. (e),( f) Dark-field images showing penetration of 50 nm GNPs through MDA-MB-231 and MCF-7 tissues, respectively


Fig. 6 Spectral mapping of size-dependent NP penetration through tissue.( a), (b) Unmapped and mapped images of 20 nm GNPs penetrated through tissue, respectively. (c) The reflectance spectra obtained for the 20 GNPs localized in the tissue. (d), (e) Unmapped and mapped images of 50 nm GNPs penetrated through tissue, respectively.( f) The reflectance spectra obtained for the 50 GNPs localized in the tissue


Fig. 7 Comparison of NP penetration as a function of size of the NPs.( a),( b) GNP penetration as a function of size and tissue thickness in MCF-7 and MDA-MB-231 cells, respectively.( c), (d) Penetration of GNPs as a function of tissue depth for 20 and 50 nm GNPs, respectively. (e) Schematic outlining the various ‘depths’ in MLC tissue structures


Fig. 8 Comparison of size-dependent NP uptake at monolayer and multilayer level. (a)The comparison of uptake per cell between monolayer and multilayer cultures across all cell lines for both sizes of GNPs.( b) The scaled reflectance spectra from the 20 nm GNPs for both the monolayer (blue) and multilayer (red) samples.( c) The scaled reflectance spectra from the 50 nm GNPs for the monolayer (blue) and multilayer (red) samples. (Color figure online)





虚拟专辑(二)纳/微米材料及器件的生物医学应用




本期虚拟专辑主要介绍纳米材料及器件在生物医学领域的研究,选自近两年发表在Nano-Micro Letters上的9篇代表性论文,敬请阅读并复制链接打开下载(免费),并欢迎投稿。





代表性论文

⊙ 1. 综述:微流体在乳腺癌诊断方面的应用

链接

 

⊙ 2. 综述:电化学纳米医学传感器在生物医学领域的应用展望

链接

 

⊙ 3. 综述:ZnO纳米颗粒的抗菌活性和毒性机制

链接

 

⊙ 4. 金纳米颗粒单层和多层细胞模型在纳米-微界面上相互作用的尺寸依赖性

链接

 

⊙ 5. 具有高抗菌抗癌特性的碳纳米管内嵌植物化学官能化Cu/Ag纳米颗粒复合物

 链接

 

⊙ 6. 牛血清白蛋白耦联磁性Fe3O4 纳米颗粒提高生物相容性与磁热疗性能

链接


⊙ 7. 细胞在阳极氧化的多尺寸二氧化钛纳米管阵列表面的行为研究

链接

 

⊙ 8.利用多层细胞培养模型揭示纳米颗粒在实体肿瘤中的吸收和分布

链接


⊙ 9. 阳离子多赖氨酸修饰磁性氧化铁纳米粒颗粒用于肺癌细胞高效标记

 链接10.1007/s40820-015-0053-5






本文参考所列文献,图片仅用于对相关科学作品的介绍、评论以及课堂教学或科学研究,不得作为商业用途。如有任何版权问题,请随时与我们联系!


声明:
1. 本文版权归《纳微快报》编辑部所有,转载请与我们联系。(QQ/微信:1165038990)
2. 因学识有限,难免有所疏漏和谬误,恳请批评指正!



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存