查看原文
其他

两年内Nature、 Nature Neurosci等:清华时松海团队在大脑皮层发育领域取得突破

brainnews 2023-04-13

从2020年开始,清华大学时松海课题组陆续在Nature、Nature Neurosci和Cell Reports等杂志发表大脑皮层发育领域相关领域的成果。

下面,我们一起来学习吧:

01



北京时间2022年6月20日晚23时,清华大学时松海课题组Nature Neuroscience杂志在线发表了题为“Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex”(乳酸代谢调控小鼠大脑新皮层血管生长和神经前体细胞行为)的研究论文。

该研究揭示了大脑新皮层发育过程中的早期增殖型放射状胶质前体细胞(Radial glia progenitor,RGP)具有更强的糖酵解代谢能力并大量合成和分泌乳酸,进而调节血管生长及其自身增殖分裂特性。

大脑新皮层是神经系统的最高级中枢,理解大脑新皮层的发育组装及工作机制是脑科学乃至整个自然科学的终极目标之一。研究大脑新皮层的发育及其调控机制有助于更好地理解其细胞组成和结构特性,进而推动生理功能和运行工作机制的认知,同时对相关疾病的诊断治疗有着至关重要的意义。大脑新皮层是进化的末期产物,其发育是一个高度复杂且受到多种因素的共同调节的生物学过程,这也为系统性研究其内在机制带来了诸多挑战。为此该研究从细胞最为基本特征—细胞代谢的角度出发,揭示了细胞代谢方式及相关产物在调控大脑新皮层发育过程中的关键作用和机制,为更好的理解大脑皮层发育机制提供了重要的理论补充。

放射状胶质前体细胞(RGP)是大脑发育最为关键的一种神经前体细胞,其分裂产生大脑皮层几乎所有的神经元和胶质细胞。在小鼠发育早期(E10.5-E11.5),大脑新皮层中几乎没有血管生长,此时RGP以对称分裂进行增殖。伴随着血管的生长,RGP也随之改变其分裂方式,以不对称分裂进行神经细胞产生。基于单细胞代谢状态分析,该研究首先发现大脑新皮层发育过程中,随着RGP谱系发生过程的进行,RGP及其子代细胞具有不同的代谢状态,并呈现出不同的代谢特征。在此基础上,结合基因表达分析、细胞代谢类型分析以及碳代谢流分析多方面研究,进一步发现进行对称分裂的增殖型RGP具有更强的糖酵解代谢能力,并大量合成和分泌乳酸,而进行不对称分裂的分化型RGP具有更强的氧化磷酸化代谢能力,并积累高浓度的乙酰辅酶A。

图1: 单细胞代谢状态分析揭示神经细胞代谢特征

为深入探讨细胞代谢方式与大脑新皮层发育的相互关系,研究者考察了具有强糖酵解代谢能力的增殖型RGP对早期大脑新皮层发育的影响,发现当抑制增殖型RGP的乳酸合成或分泌,导致大脑新皮层中乳酸浓度降低,血管生长出现缺陷。进一步分析发现,乳酸可以通过调节趋化因子配体CXCL1的表达来调节血管内皮细胞的迁移和增殖。此外,研究者发现抑制增殖型RGP的乳酸合成代谢会系统性改变其基因表达谱并重塑细胞代谢方式,导致RGP过早分化。为探讨这一内在机制,研究者发现与分化型RGP相比,增殖型RGP呈现出更长的线粒体形态,抑制或阻断乳酸合成或分泌都会导致线粒体长度大幅度缩短,进而导致RGP分化。该结果表明增殖型RGP通过加强乳酸合成来影响线粒体形态,进而保持其对称分裂增殖特性。

图2: 乳酸合成代谢调控早期大脑新皮层发育


清华大学生命科学学院时松海教授为本文通讯作者,清华大学生命科学学院2017级博士董晓翔为本文第一作者。清华大学生命科学学院张强强博士和马健博士、清华大学生命科学学院博士研究生于翔宇和王玎,以及美国达特茅斯学院本科生马嘉明为本文共同作者。该研究得到了清华大学实验动物中心和生物医学测试中心的大力协助和支持。

该研究获得了国家自然科学基金委创新群体基金、国家科技部脑科学与类脑研究基金、北京市教育委员会卓越青年科学家计划、北京市科技委员会科技计划、北京生物结构前沿研究中心、生命科学联合中心和北京脑科学与类脑研究中心的资助。

相关论文信息:

https://doi.org/10.1038/s41593-022-01093-7


02


2021年3月16日,清华-IDG/麦戈文脑科学研究院、清华大学生命科学学院、时松海团队与剑桥大学戈登研究所Benjamin D. Simons团队合作,在细胞出版社旗下期刊《Cell Reports》以长文形式发表了题为“大脑新皮层神经胶质细胞发生的特异性前体细胞行为及其与肿瘤发生的关联”( Distinct progenitor behavior underlying neocortical gliogenesis related to tumorigenesis)的研究论文,阐明了大脑新皮层中神经胶质细胞发生的程序,并提示神经胶质前体细胞的行为异常与神经胶质瘤的发生相关


神经元和神经胶质细胞是哺乳动物大脑新皮层基本细胞组成,几乎都由放射状胶质细胞(Radial glial progenitors,RGPs)分裂产生。时松海团队之前的研究在单细胞水平系统定量地揭示了RGPs的规律分裂行为和神经元发生细胞程序(Gao et al., Cell 2014);然而,目前对神经胶质细胞的发生机制还知之甚少。


 在本文中,通过对小鼠大脑新皮层RGPs进行系统性的双荧光标记的嵌合分析(Mosaic analysis with double markers, MADM),在单细胞水平确定了RGPs进行神经胶质发生的细胞程序。在发育过程中,RGPs逐渐完成从神经元发生到神经胶质细胞发生的转换,在胚胎期第16天(E16)达到峰值,E17基本完成转换,约16%左右的RGPs可产生神经胶质细胞。有意思的是,单个RGP按照特定比例进行神经胶质细胞产生,其中星形胶质细胞发生:少突胶质细胞发生:星形胶质细胞和少突胶质细胞发生约为 60%:15%:25%,最终形成三种特定谱系的胶质细胞克隆。另外,单个RGP通过相对随机过程产生命运受限的神经胶质中间前体细胞,进而产生数量相对确定的同一亚型或分化状态的星形胶质或少突胶质细胞,并形成局部克隆簇。另外,星形胶质细胞发生和少突胶质细胞发生是相互独立的。以上研究系统定量地阐明了新皮层神经胶质细胞发生的基本细胞机制。


为了进一步研究神经胶质细胞发生的分子调控机制,本文利用MADM系统的特性研究了肿瘤抑制蛋白Neurofibromin 1( NF1)在单细胞水平上对RGP行为、神经发生和神经胶质细胞发生的调控。虽然神经元和神经胶质细胞都起源于RGPs,但在RGPs中去除NF1显著增加神经胶质细胞产生,不影响神经元的产生。更有意思的是,虽然NF1缺失显著增加了星形胶质细胞和少突胶质细胞的数量,但对这两类细胞的影响程度和细胞调控机制是不同的。NF1的缺失导致星形胶质细胞增加约2倍,但少突胶质细胞增加超过15倍。进一步研究表明,NF1的缺失导致单个RGP产生的星形胶质中间前体细胞数量增加,但不影响单个星形胶质中间前体细胞的产出;相比之下,NF1的缺失不仅显著性增加了少突胶质中间前体细胞的数量,也大大促进了单个少突胶质中间前体细胞的产出,可导致巨型少突胶质细胞克隆的形成。这些研究不仅阐明了RGPs在神经元和不同神经胶质细胞发生中的不同行为和调控机制,也提示少突胶质细胞谱系发生可能与脑肿瘤起源密切相关。


(左)MADM标记的大脑新皮层进行神经发生到神经胶质细胞发生转变的单个RGP克隆(绿色/EGFP为神经元,红色/tdTomato为神经胶质细胞;第1-6层中为离散的星形胶质细胞局部克隆簇,白质(white matter, WM) 中为少突胶质细胞局部克隆簇,紫色为OLIG2免疫荧光标记。)

(右)大脑新皮层RGP进行神经胶质发生细胞程序。I-APC,中间星状胶质前体细胞;I-OPC,中间少突胶质前体细胞。



时松海教授与Benjamin D. Simons教授为本文的共同通讯作者,清华大学生命学院博士后沈忠福和博士生林阳为本文共同第一作者。时松海实验室博士生杨嘉俊和Benjamin Simons实验室David Jörg博士负责本文中数据定量分析。清华大学博士生彭榆玮、技术员张秀丽、本科生徐一帆(现为华盛顿大学博士生)、助理研究员马健博士以及康奈尔大学医学院Luisirene Hernandez博士同样做出重要贡献。该研究获得了北京市卓越青年科学家项目、北大清华生命科学联合中心、北京生物结构前沿研究中心、国家自然科学基金、北京脑科学与类脑研究中心计划、清华大学结构生物学高精尖创新中心、霍华德休斯医学研究所和清华大学水木学者项目的经费支持。该研究得到了清华大学生物医学测试中心实验动物中心的大力协助和支持。


参考文献:

Gao, P., Postiglione, M. P., Krieger, T. G., et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell, 2014, 159(4): 775-788.



03


2020年3月25日,清华大学IDG-麦戈文脑科学研究院、生命科学学院时松海教授和结构生物学高精尖创新中心史航研究员课题组在Nature杂志在线发表了题为“Centrosome anchoring regulates progenitor properties and cortical formation”(中心体的锚定调控神经前体细胞特性和大脑皮层的形成)的研究论文,首次揭示了中心体调控哺乳动物大脑皮层神经前体细胞机械特性和分裂能力,进而影响大脑皮层的大小和折叠的崭新机制。


在这篇文章中,研究人员首先采用基于透射电镜成像的连续超薄切片技术对胚胎期小鼠脑组织进行观察,首次观察到了放射状胶质细胞内的中心体是通过附着在母体中心粒上的远端附属物(distal appendages)锚定在顶端细胞膜上的(图1 )
为了探索中心体定位的分子调控机制和生理功能,研究人员特异性地去除了大脑皮层放射状胶质细胞内远端附属物的重要构成蛋白CEP83,使得母体中心粒上不再形成远端附属物,导致中心体和顶端膜发生微小的错位,从而阻止了中心体与细胞膜的锚定和连接(图1)
【图1】中心体通过远端附属物锚定在顶端膜上。

有趣的是,特异性地破坏放射状胶质细胞内中心体的锚定后,小鼠成年后的脑皮层体积明显增大,且在皮层的背侧中缝区普遍存在异常折叠(图2 A)。进一步的研究发现这一异常表型来源于放射状胶质细胞在神经发生早期的过度增殖和之后中间前体细胞的增多(图2 B)
【图2】CEP83特异性敲除导致皮层体积增大和异常折叠。
神经发生的异常是如何导致的呢?再进一步的研究发现中心体这一不足1微米的错位破坏了顶端膜上特有的环状微管结构,导致顶端膜被拉伸、变硬。顶端膜物理特性的改变引起了放射状胶质细胞内机械敏感信号通路相关的YAP蛋白(Yes-associated protein)的过度激活,从而导致了放射状胶质细胞前期的过度扩增以及之后中间前体细胞的增多,最终使得大脑皮层神经细胞数量显著增加,皮层体积扩大,并引发异常折叠。与之相吻合的是,同时特异性敲除YAP可以恢复皮层体积至正常水平,不再发生折叠(图3)。
【图3】中心体锚定调节放射状胶质细胞顶端膜机械特性和YAP信号,导致神经细胞数量增多和皮层体积扩增。
该研究解决了长期以来关于放射状胶质细胞内中心体特殊定位的原因和作用谜题,为研究神经前体细胞行为和皮层发育调控提供了全新的角度。另外,之前研究表明中心体蛋白相关的突变一般与小头症(microcephaly)紧密相关,然而该研究发现中心体蛋白突变导致大头症,并首次揭示了其机制。更重要的是,人类CEP83双等位基因突变会导致脑室体积增大,智力障碍和小儿肾消耗症,该研究为揭示人皮层形态和智力异常提供了重要线索。
康奈尔医学院的Wei Shao与清华大学生命科学学院的博士生杨嘉俊为本文共同第一作者。北京大学生命学院博士生贺明、清华大学生命学院博士生于翔宇、康奈尔医学院Zhaohui Yang、纪念斯隆凯特琳癌症研究中心Alexandra L. JoynerKathryn V. AndersonMeng-Fu Bryan Tsou、纽约大学医学院Choong Heon LeeJiangyang Zhang参与本文研究。清华大学时松海教授和史航研究员为本文共同通讯作者。

原文链接:https://doi.org/10.1038/s41586-020-2139-6



报道来源:清华-IDG/麦戈文脑科学研究院

整理:brainnews编辑部



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存