有序Logistic回归的SPSS操作,对教程做了一些更新
3个多月前,医咖会发过有序Logistic回归的详细版SPSS教程;前几天,一位大咖用户『fangjinming1983』在医咖会官网(http://www.mediecogroup.com/)上对文章内容提出了疑问,我们查阅了多篇文献,发现以前有些理解不是很到位,所以决定再更新一下这个教程。更新的内容主要集中在“六、结果解释”章节的“参数估计”部分。
一、问题与数据
研究者想调查人们对“本国税收过高”的赞同程度:Strongly Disagree——非常不同意,用“0”表示;Disagree——不同意,用“1”表示;Agree--同意,用“2”表示;Strongly Agree--非常同意,用“3”表示。
另外,研究者也调查了一些其它情况,包括:是否是“雇主”(biz_owner:Yes——是,用“0”表示;No——否,用“1”表示)、年龄(age)和党派(politics:Lib——党派1,用“1”表示;Con——党派2,用“2”表示;Lab——党派3,用“3”表示)。部分数据如下图:
二、对问题的分析
使用有序Logistic进行回归分析时,需要考虑4个假设。
假设1:因变量唯一,且为有序多分类变量,如城市综合竞争力等级可以分为高、中、低;某病的治疗效果分为痊愈、有效、无效等。
假设2:存在一个或多个自变量,可为连续、有序多分类或无序分类变量。
假设3:自变量之间无多重共线性。
假设4:模型满足“比例优势”假设。意思是无论因变量的分割点在什么位置,模型中各个自变量对因变量的影响不变,也就是自变量对因变量的回归系数与分割点无关。
有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量“本国的税收过高”的赞同程度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)、(0+1+2 vs 3),均是较低级与较高级对比。
在有序多分类Logistic回归中,假设几个二元Logistic回归中,自变量的系数相等,仅常数项不等,结果也只输出一组自变量的系数。因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即“比例优势”假设)进行检验(又称平行线检验)。如果不满足该假设,则考虑使用无序多分类Logistic回归。
三、前期数据处理
对假设进行验证前,我们需要将分类变量设置成哑变量。
1. 为什么要设计哑变量
若直接将分类变量纳入Logistic回归方程,则软件会将分类变量按连续变量处理。例如,如果把性别按“1”——男、“2”——女进行编码,然后直接把性别纳入方程,方程会认为“女”是“男”的2倍。为了解决这个问题,需要用一系列的二分类变量“是”或“否”来表示原始的分类变量,这些新的二分类变量被称为“哑变量”。
在SPSS软件的二项Logistic回归模型中,将分类变量选入categorical,软件会自动设置一系列的哑变量。由于验证假设3(自变量之间无多重共线性)需要通过线性回归实现,而在线性回归中,就需要手动设置哑变量。因此,这里需要先手动设置哑变量。
2. 设置哑变量的思路
哑变量的数目是分类变量类别数减一。本例中,党派1、党派2和党派3的原始编码为1、2和3。设置哑变量时,需要对党派1和党派2进行重新编码。
建立新变量Lib(党派1),若调查对象选了党派1,则Lib编为“1”,代表是;若未选党派1,则Lib编为“0”,代表否。同样,建立新变量Con(党派2),将是否选党派2编为“1”或“0”。此时,若既未选党派1,又未选党派2,则两个新变量Lib和Con的编码都为“0”,代表党派3。此时,党派3在模型中是参考类别(Reference)。
3. 在SPSS中设置哑变量
(1) 首先,先创建新变量“Con”,在主菜单下选择Transform→Recode into Different Variables... ,如下图:
(2) 在Recode into Different Variables对话框中,将politics选入右侧Numeric Variable-->Output Variable下,在右侧Output Variable中填写“Con”。点击Change→Old and New Values。
(3) 出现Recode into Different Variables: Old and New Values对话框,在左侧的Old Value下的Value中填入2,在右侧的New Value下的Value中填入1,点击Add。
(4) 将其它值变为“0”:左侧点击All other values,在右侧Value中填入“0”,点击Add→Continue。
(5) 如果数据中有缺失值,点击左侧System-missing,右侧点击System-missing→Add,保持缺失值:
设置得到的结果如下图:
本例中没有缺失值,可省略这一步。
(6) 继续创建新变量“Lib”,与以上步骤相似。两个变量创建完成后,点击变量视图,可以看到在最右侧已经生成了两个新变量“Con”和“Lib”,如下图:
四、对假设的判断
假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断,所以这里主要对数据的假设3-4进行检验。
1. 检验假设3:自变量之间无多重共线性
与线性回归一样,有序Logistic回归模型也需要检验自变量之间是否存在多重共线性。自变量之间的简单相关或多重相关都会产生多重共线性。容忍度(Tolerance)或方差膨胀因子(VIF)可以用来诊断自变量之间的多重共线性。
遗憾的是,SPSS的Ordinal Regression模块并不能提供容忍度或方差膨胀因子,但是我们可以通过线性回归来获得。由于我们关心的是自变量之间的关系,因此容忍度或方差膨胀因子与模型中因变量的函数形式无关。
也就是说,我们可以将Ordinal Regression的因变量(有序多分类变量)、自变量(二分类、多分类或连续变量)直接带入线性回归模型,从而获得容忍度或方差膨胀因子。
(1) 在主菜单点击Analyze→Regression→Linear...
(2) 将tax_too_high选入Dependent,将biz_owner、age、Con、Lib选入Independent(s)。
(3) 点击Statistics,出现Linear Regression:Statistics对话框,点击Collinearity diagnostics→Continue→OK。
结果如下图:
如果容忍度(Tolerance)小于0.1或方差膨胀因子(VIF)大于10,则表示有共线性存在。
本例中,容忍度均远大于0.1,方差膨胀因子均小于10,所以不存在多重共线性。如果数据存在多重共线性,则需要用复杂的方法进行处理,其中最简单的方法是剔除引起共线性的因素之一,剔除哪一个因素可以基于理论依据。
2. 检验假设4:模型满足“比例优势”假设
“比例优势”假设可以在后面结果部分的“平行线检验”中看到。
五、SPSS操作
SPSS中,可以通过两个过程实现有序Logistic回归。分别是Analyze → Regression → Ordinal...和Analyze → Generalized Linear Models → Generalized Linear Models...。
其中,Analyze → Regression → Ordinal模块,可以检验 “比例优势”假设,但无法给出OR值和95%CI。而Analyze → Generalized Linear Models → Generalized Linear Models模块可以给出OR值和95%CI,但无法检验“比例优势”假设。
这里,我们主要介绍Analyze → Regression → Ordinal过程。
(1) 在主菜单点击Analyze→Regression→Ordinal...
(2) 出现Ordinal Regression对话框,将tax_too_high选入Dependent,将biz_owner和politics选入Factor(s),将age选入Covariate(s),再点击Output。
(3) 出现Ordinal Regression: Output对话框。在原始设置的基础上,勾选Display下方的Test of parallel lines,勾选Saved Variables下方的Estimated response probabilities、Predicted category、Predicted category probability和Actual category probability,这四个选项会在SPSS数据集中产生新的变量,如下图所示。点击Continue。
(4) 点击Location,出现Ordinal Regression: Location对话框,如果自变量间有交互作用,则通过该对话框进行选择。本例中自变量间无交互作用,所以点击Continue→OK。
六、结果解释
1. 假设4的检验结果
在结果解释之前,我们需要先看一下假设4的检验结果(平行线检验的结果)。
在Ordinal Regression:Output对话框中,选则Test of parallel lines后出现,的结果如下表。本例中平行线检验χ2 = 8.620, P = 0.375,说明平行性假设成立,即各回归方程相互平行,可以使用有序Logistic过程进行分析。
如果平行线假设不能满足,可以考虑一下两种方法进行处理:①进行无序多分类Logistic回归,而非有序Logistic回归,并能接受因变量失去有序的属性;② 用不同的分割点将因变量变为二分类变量,分别进行二项Logistic回归。
但是,当样本量过大时,平行线检验会过于敏感。即当比例优势存在时,也会显示P<0.05。此时,可以尝试将因变量设置为哑变量,并拟合多个二分类Logistic回归模型,通过观察自变量对各哑变量的OR值是否近似来判断。
2. 单元格
输出结果中,首先会给一个警告,内容为:有235(63.2%)个频率为零的单元格。如果存在过多频数为0的单元格,则会影响模型的拟合,导致拟合优度检验不可信。
扩展阅读
要理解这一点,就需要理解“协变量模式(covariate pattern)”的概念。协变量模式是指数据中自变量数值的组合,与因变量无关。比如,在本数据中,一个协变量模式是23岁(age),雇主(biz_owner)和党派3(politics)。对于每种协变量模式,可能有多个研究对象。比如,如果有4个研究对象是23岁、雇主和党派3,这代表一个协变量模式。
需要理解的另一个概念是“单元格模式(cell pattern)”,它是指自变量和因变量数值的组合,与协变量模式相似,但加上了因变量。对于同一个协变量模式,如果协变量模式能对应因变量所有值,就没有“缺失”的单元格。但实际中,一个协变量模式对应的因变量可能只有一个值。假如,有1个23岁、雇主和党派3研究对象的因变量是“Agree”,但由于因变量总共有4个水平,所以此时单元格“缺失”3个。
因此,协变量模式与单元格模式之间的联系是:(1)所有可能的单元格总数是协变量模式个数乘以因变量的分组个数;(2)实际的单元格是指单元格模式中频率不为0的单元格。单元格频率为零的比率为(总单元格的个数-实际单元格的个数)÷总单元格的个数。
3. 拟合优度检验结果
下图为拟合优度检验的结果,分别为Pearson和Deviance两种拟合优度检验。本例中,Pearson检验的结果χ2 = 745.367, P<0.001<0.05,说明Pearson检验结果为模型拟合不好;而Deviance检验的结果χ2 = 232.618,P=0.960>0.05,说明Deviance检验结果为模型拟合好。
这两个统计量对于上述单元格频数为0的比例十分敏感。本例中频数为0的单元格非常多,这两个统计量不一定服从卡方分布,而基于卡方分布计算的P值也不可信,所以本例中这两个检验结果都不可信。
4. 伪决定系数
下图给出了三个伪决定系数:Cox and Snell,Nagelkerke和McFadden,这三种方法是最常用的计算伪决定系数的方法。由于三种方法并没有得到广泛的应用,所以我们也不用关注该结果。
5. 模型拟合信息
Model Fitting Information的结果是对模型中所有自变量的偏回归系数是否全为0的似然比检验。结果χ2=87.911(该值为仅有常数项的模型和最终模型的-2 Log Likelihood值之差),P< 0.001,说明至少有一个自变量的偏回归系数不为0。换句话说,拟合包含biz_owner、politics和age这3个自变量的模型拟合优度好于仅包含常数项的模型。
6. 模型预测准确度
另一种看模型拟合程度的方法是看模型对因变量的预测情况。在Ordinal Regression: Output对话框中,勾选Saved Variables下方的Estimated response probabilities、Predicted category、Predicted category probability和Actual category probability后,会在SPSS数据集中产生新的变量,如下图所示。
EST1_1、EST2_1、EST3_1和EST4_1分别代表对因变量的四个程度(Strongly Disagree、Disagree、Agree和Strongly Agree) 的预测概率。
第一行(case 1),可以看到EST1_1、EST2_1、EST3_1和EST4_1相加的概率为1,其中EST1_1的概率最大,为0.44,对应的PRE_1为0(Strongly Disagree),因变量的观察值也是0(Strongly Disagree),此时模型准确的预测了因变量。
而第三行(case 3),EST1_1、EST2_1、EST3_1和EST4_1中EST3_1最大,预测的PRE_1为2(Agree),而因变量实际的观察值为0(Strongly Disagree),此时模型没有准确的预测因变量。
那么,如何看出模型预测因变量的程度呢?可以按照下述步骤建立表格。
(1) 在主界面下选择Analyze→Descriptive Statistics→Crosstabs...
(2) 将tax_too_high选入Row(s),将PRE_1选入Column(s),点击Cells。
(3) 在已选的Observed基础上,点击Row→Continue→OK。
(4) 结果如下图。当tax_too_high=0,即为Strongly Disagree时,模型预测正确的有11人(45.8%)。相似的,当tax_too_high分别为Disagree、Agree和Strongly Agree时,模型预测正确的分别有9人(23.7%)、76人(83.5%)和11人(28.2%)。模型预测的总准确度可以通过计算获得,即四个分组中预测正确人数除以总人数=(11+9+76+11)÷192=55.7%。
7. 参数估计
在Parameter Estimates中,得到了回归方程的参数,包括常数项(Estimates或B)及其标准误和95%置信区间等。
(1) Threshold(常数项)中,第一行tax_too_high=0代表“Strongly Disagree” VS 其它组的累积概率模型的截距;tax_too_high=1代表 “Strongly Disagree”和“Disagree”VS其它组的累积概率模型的截距;tax_too_high=2代表 “Strongly Disagree”、“Disagree”和“Agree” VS“Strongly Agree”的累积概率模型的截距。
(点击图片看大图)
(2) 除了常数项不同,Location中自变量的系数都是同一个系数,这也是为什么要求有序Logistic回归需要满足比例优势的假设。
得到参数估计的结果后,第一处特别要注意的是:对于有序Logistic回归,不同软件使用的模型有所不同,SPSS使用的是其中一种模型。因此,相同的数据使用不同的软件(SPSS、Stata、SAS、R、JMP等),得到的截距和效应值的符号会有所不同。尤其是效应值的符号,有些软件是正值,有些则是负值,因此对应的解释方法也有所不同(但最终的意义一样)。具体可参考https://www.cscu.cornell.edu/news/statnews/stnews91.pdf。
得到上述结果后,依据SPSS使用的模型,可以得到三个方程。
可以看到,SPSS得到的方程中,除了截距项之外,所有效应值要在Parameter Estimates表格中的原始值基础上加上负号。
对于OR值及其95%CI,Analyze → Regression → Ordinal模块不能直接给出,此时可以根据效应值及其95%CI手工计算OR值及其95%CI,也可以借助Analyze→Generalized Linear Models→Generalized Linear Models模块计算。该模块的操作见本文第八部分。
第二处特别要注意的是:SPSS使用的模型是以因变量的较高等级为参照,因此解释OR值时略有特殊。
以本研究中是否为“雇主”为例,其OR值及其95%CI的下限、上限分别为e-0.655 = 0.519、e-1.233 = 0.291和e-0.096 = 0.908(由于取负值,所以需要颠倒原来的上下限)。得到OR值后,其解释为:相对于非雇主,雇主认为“税收低”的OR值为0.519。
可以看到,基于SPSS使用的模型,我们需要对效应值取负值,并在解释时,以最高等级为参照。
因此,如果不对效应值取负值,解释时要以最低等级为参照,得到的结论完全一样。重新计算OR’值及其95%CI的下限、上限分别为e0.655 = 1.944、e0.096 = 1.101、e1.233 = 3.431(所有取值均为取负值时的倒数),我们得到如下结果:雇主认为“税收高”的OR值是非雇主的1.944倍(95%CI:1.101-3.431),χ2=5.255, P=0.022。
(注:在本例中,“税收过高”的赞同程度:非常不同意,用“0”表示;不同意,用“1”表示;同意,用“2”表示;非常同意,用“3”表示)
特别需要注意的这两点可以总结为:SPSS做有序Logistic回归时,给出预测模型的方程时,需要将除了截距外的效应值前加上负号;结果解释时,可以不给效应值加负号,但需要以因变量的最低等级为参照。
同样的,以党派3为对照组,党派1认为“税收高”的OR值是党派3的1.038倍 (95%CI:0.509-2.116),χ2 = 0.010,P=0.919;党派2认为“税收高”的OR值党派3的3.194倍(95%CI::1.626 -6.277),χ2 = 11.358,P=0.001。这样可以看到党派1 VS 党派3、党派2 VS 党派3的结果,但是没有党派1和党派2比较的结果。此时,可以对Politics重新编码,将党派1编为3,党派3编为1,再进行上述操作,即可得到结果。年龄每增加一岁,对“税收高”的赞同程度增加27.4%(OR=1.274,95%CI:1.196-1.357), χ2 = 56.355,P<0.001。
七、撰写结论
运用符合比例优势假设的有序Logistic回归分析是否是雇主、投票选举的党派和年龄对“税收过高”的效应。
平行线检验的结果为χ2 = 8.620,P=0.375,说明比例优势假设存在。Deviance拟合优度检验显示模型拟合好,χ2 = 232.618,P=0.960,但是有大部分(63.2%)频数为0的单元格。模型拟合信息显示,本模型优于只有常数项的模型,χ2 = 87.911,P < 0.001。
雇主认为“税收高”的OR值是非雇主的1.944倍(95%CI: 1.101-3.431),χ2 = 5.255,P=0.022。以党派3为对照组,党派1认为“税收高”的OR值是党派3的1.038倍 (95%CI: 0.509-2.116),χ2 = 0.010,P= 0.919;党派2认为“税收高”的OR值党派3的3.194倍(95%CI: 1.626 -6.277),χ2 = 11.358,P=0.001。年龄每增加一岁,对“税收高”的赞同程度增加27.4%(OR=1.274,95%CI:1.196-1.357), χ2 = 56.355,P<0.001。
八、利用其它模块计算OR值
上述Analyze→Regression→Ordinal模块,可以检验 “比例优势”假设,但无法给出OR值和95%CI。而Analyze→Generalized Linear Models→Generalized Linear Models模块可以给出OR值和95%CI。
1. SPSS操作
(1) 在主菜单点击Analyze→Generalized Linear Models→Generalized Linear Models。出现Generalized Linear Models对话框后,在Ordinal Response下选择Ordinal logistic。
(2) 点击上方的Response,出现 Response对话框。将tax_too_high选入Dependent Variable,下方的category order行可以选择Ascending或Descending。
本例中tax_too_high共有四个等级,“0”表示“非常不同意”。如果选择ascending,则“0”是最低的等级;如果选择Descending,则表示“0”为最高的等级。
(3) 点击上方的Predictors,出现Predictors对话框。将biz_owner和politics选入Factors,将age选入Covariates。
(4) 点击上方的Model,出现Model对话框。将biz_owner、politics和age选入右侧的Model中。
(5) 点击Estimation,出现Estimation对话框。在Method中选择Fisher。
(6) 点击Statistics,出现Statistics对话框。在原始设置下,再勾选Print下的Include exponential parameter estimates,勾选该选项会输出OR值及其95%的置信区间,然后点击OK。
2. 结果解释
Generalized Linear Models模块不会给出单元格信息、伪决定系数和平行线检验结果。模型拟合信息在Ominibus Test表中,该结果与Regression→Ordinal的Model Fitting Information结果一致。
参数估计的OR值和95%CI见下图:
(点击图片看大图)
(如果想使用文中数据进行练习,请使用电脑打开以下网址:
http://www.mediecogroup.com/method_article_detail/62/
点击左侧“数据下载”免费下载原始数据)
更多阅读
1. SPSS详细操作:配对卡方检验(McNemar’s test)
关注医咖会,轻松学习统计学~
快加小咖个人微信(xys2016ykf),拉你进统计讨论群和众多热爱研究的小伙伴们一起交流学习。
点击左下角“阅读原文”,看看医咖会既往推送了哪些统计教程。或者使用电脑打开网址:http://www.mediecogroup.com/,查看60种SPSS教程。