令欧美各国掀起研究热潮的颠覆性技术—空间激光通信
专家库 | 人才库 | 企业库 | 项目库 | 投资机构库 | 招商信息库
来源:军事文摘(ID:mildig)
作者:张保庆
空间激光通信是一种利用激光束作为载波在空间进行图像、语音、信号等信息传递的通信方式。与传统微波通信相比,激光通信具有传输速率快、通信容量大、抗电磁干扰性能强、保密性高等优点,且其通信终端体积小、功耗低、实用性极高,引发各国研究热潮。空间激光通信技术的发展和突破对增强空间信息传输的实时性、安全性以及未来深空探测意义重大,有望变革未来空间通信技术发展。
优势与挑战并存
随着空间技术、传感技术等的发展,卫星及各种航天器所需的信息传输量呈指数级增长,目前空间通信所采用的以微波通信为主的通信手段已难以满足急剧增长的通信容量需求。空间激光通信被认为是最有潜力革新空间通信的颠覆性技术。
较高的数据传输速率。空间激光通信的载波频率范围为190~560太赫兹,为微波通信频率的数千倍乃至数万倍,具有巨大的宽带提升空间,可实现更高的数据传输速率,使从空间传回海量视频和高精度测量数据成为可能,对于自然灾害监测、军事通信等具有重要的战略意义。
令各国掀起研究热潮的颠覆性技术—空间激光通信
系统终端体积小、质量轻、功耗低。相比于微波,激光的波长要短许多。波长越短,能量越高,所受的衍射作用越小,激光所需的发射和接收天线尺寸可以成倍缩小,使得激光通信系统终端的体积、质量以及功率都远远优于微波通信,高度满足空间应用对有效载荷小型化、轻量化、低功耗的要求。
抗电磁干扰能力强、安全保密性高。空间激光通信采用激光作为载波,激光光束极窄,发散角小于1毫弧度,亮度和能量密度极高,信息传递不易被其他设备捕获,且邻近卫星间的通信干扰也可忽略不计,具有较高的抗电磁干扰能力和安全保密性能。
尽管存在诸多优势,目前空间激光通信技术整体而言仍处于研究阶段,尚面临诸多技术挑战,如激光通信较为受制于激光通信终端和探测器件、大气湍流、大气衰减等因素的影响和干扰,空间激光通信所需的地面基础设施远未完备,空间激光通信高频带高宽带的技术优势尚未完全挖掘等。
欧美掀起研究热潮
美国、欧洲、日本等均在空间激光通信技术领域投入巨资进行相关技术研究和在轨试验,对空间激光通信系统所涉及的各项关键技术展开了全面深入地研究,不断推动空间激光通信技术迈向工程实用化。
美国国家航空航天局(NASA)加速发展空间激光通信技术。美国早期开展的“激光通信演示系统”“转型卫星通信系统”等项目研究,为后期技术发展奠定了良好的技术基础。近年来,NASA尤为重视空间激光通信技术发展,并将其作为重要优先事项,加速推进空间激光通信技术的发展和成熟,使近地任务和深空任务的空间通信更为高效,以解决未来空间飞行任务面临的海量数据传输问题。
LCRD系统艺术渲染图
“月球激光通信演示验证”项目美国NASA于2013年10月成功开展了“月球激光通信演示验证”项目。从月球轨道与多个地面站分别进行了双向激光通信试验,创造了622兆比特/秒的下行数据传输速率新记录,上行数据传输速率也达到20兆比特/秒。首次验证了空间激光通信系统的可行性以及系统在空间环境中的可生存性。
“激光通信中继演示验证”项目美国NASA正在开展的“激光通信中继演示验证”项目主要用于验证激光通信技术的有效性和可靠性等。该系统包括2个地球同步轨道星载激光通信终端以及2个地面激光通信终端。NASA计划于2019年发射星载激光通信终端至地球同步轨道,开展为期2年的激光通信中继演示验证任务。任务中,位于美国加州的地面站将向距地约3.6万千米的地球同步轨道星载激光通信终端发射激光信号,随后地球同步轨道星载激光通信终端将信号中继到另一个地面站。目前,激光通信中继演示验证系统已成功通过关键决策点评审,并已于2017年12月开始进行开发集成与测试阶段,正为2019年新一阶段的演示验证任务积极准备。
“深空光学通信”项目“深空光学通信”项目通信距离比“激光通信中继演示验证”项目更远,致力于研究激光通信对于深空任务数据速率、占用空间和功耗的改进作用。2017年NASA称,按照计划,深空光学通信项目将于2018年—2019年进行地面测试,2023年搭载普赛克飞行器向一颗金属小行星进发,进而对深空激光通信技术进行验证。
“一体化射频与光学通信”项目NASA格伦研究中心团队正在开展“一体化射频与光学通信”概念研究,计划向火星轨道发送一颗激光通信中继卫星,用于接收远距离航天器的数据并将数据中继至地球。“一体化射频与光学通信”系统将使用射频和激光集成通信系统,既可为使用激光通信系统的新型航天器提供服务,也可为使用射频通信系统的传统航天器提供服务,将有效促进NASA所有空间资产间的互操作性。
2013年,美国宇航局月球大气与粉尘环境探测器进行了激光通信实验,在月球和地球之间建立了激光链路
欧空局重点推进激光通信系统商业化运营。欧空局早期实施的“半导体激光星间链路试验”等项目首次验证了低地球轨道至地球同步轨道的星间通信,项目取得的极大成功给了欧空局极大的信心。2008年底,欧空局决定在其“欧洲数据中继系统”(EDRS)中应用激光通信终端,以促进空间激光通信系统的研发和实施达到成熟阶段,并以商业模式运营。近年来,“欧洲数据中继系统”取得了一系列突破性进展,成为世界上首个商业化运营的高速率空间激光通信系统。
“欧洲数据中继系统”是由欧空局和空客防务与航天公司在“公私合作伙伴关系”机制下共同研发的世界首个独立运行的商业化空间激光通信系统,其中欧空局负责系统研发,空客防务与航天公司作为项目主承包商负责系统的建造、发射和运营。“欧洲数据中继系统”通过采用激光通信技术在地球静止轨道为近地轨道卫星、机载平台向欧洲地面站实时中继传输大量数据。“欧洲数据中继系统”一期系统的空间段包括两个地球静止轨道节点,分别是EDRS-A数据中继有效载荷和配置了数据中继有效载荷的EDRS-C专用卫星。
“欧洲数据中继系统”的首个激光通信中继载荷EDRS-A已于2016年1月30日成功发射,迈出了构建全球首个卫星激光通信业务化运行系统的重要一步。EDRS-A可提供激光和Ka波段两种双向星间链路,星间传输速率可达1.8吉比特/秒。在完成一系列在轨测试后,EDRS-A于2016年6月成功传输了欧洲哨兵1A雷达卫星的图像,并于2016年7月进入业务运行阶段。EDRS-A载荷实现在轨服务,表明欧洲已率先实现星间高速激光通信技术的业务化应用,是近年来欧洲航天技术快速发展的一个重要里程碑。
欧空局计划于2020年将“欧洲数据中继系统”扩展成为全球覆盖系统,形成以激光数据中继卫星与载荷为骨干的天基信息网,实现卫星、空中平台观测数据的近实时传输。EDRS不仅将满足欧洲航天活动对空间数据传输速率、传输量和实时性日益增长的需求,更将使欧洲摆脱对非欧地面站的依赖,保持空间通信的战略独立性。欧空局认为,美国防部及其无人机机队将是EDRS未来的主要市场。
日本致力于激光通信终端小型化研究
日本主要采取国际合作的方式进行空间激光通信技术研究,早期开展的“地面轨道间激光通信演示验证”等项目取得了巨大的成功,实现了世界首次低轨卫星与地面站及移动光学地面站之间的激光通信试验。近年来,为保持空间激光通信技术方面的优势,日本开始向激光通信终端小型化、轻量化、低功耗方向发展。
太空中的通信卫星
“空间光通信研究先进技术卫星”计划日本“空间光通信研究先进技术卫星”计划旨在验证适用于50千克级小卫星的“小型光学通信终端”。2014年5月,“小型光学通信终端”搭载低轨小卫星发射入轨,并已于2014年8月—11月间成功开展了低轨卫星对地激光通信试验。“小型光学通信终端”总质量仅为5.8千克,最远通信距离达1000千米,下行通信速率10兆比特/秒,可构建绝对安全的全球光通信网络,使得飞机、卫星收集的高分辨率图像数据可通过空间激光通信链路下传至地面站。
“激光数据中继卫星”计划日本2015年1月9日公布的新版《宇宙基本计划》将“激光数据中继卫星”计划正式列入其中,并于2015财年下拨了32.08亿日元作为启动经费。日本计划2019年发射“激光数据中继卫星”,将当前数据中继系统的微波链路替换为激光链路,通过激光实现先进光学卫星等新一代高分辨率对地观测卫星之间的通信,预设通信速率达2.5吉比特/秒,届时将使日本获得更高速的实时观测能力。
蕴含巨大应用价值
空间激光通信的高速率和高安全性将不断满足航天活动对空间数据传输速率、传输量和实时性日益增长的需求,必将使其成为未来空间通信的主要形式。深入挖掘和利用空间激光通信蕴含的巨大应用价值,对增强当前空间信息传输的实时性、安全性以及未来深空探测意义重大。
火星勘测轨道飞行器在火星上空时的模拟图
满足信息化战争对通信带宽不断增长的需求。现代信息化战争对通信带宽的需求越来越大,如战场遥感测绘信息、实时战斗高清图像、强干扰复杂电磁环境下的指令交互等无一例外需要稳定的信息传输技术做保障,使得对通信系统带宽资源需求急剧增长。传统微波卫星通信系统由于成本高昂,且卫星轨道资源和频谱资源日益紧缺,难以满足作战人员获取实时战场态势数据的迫切需求。空间激光通信系统具有巨大的带宽提升空间,可实现更高的数据传输速率,能够充分保证战场海量信息的实时性传输。同时,激光收发装置和信号处理装置体积小、重量轻、功耗低,星上配备多个激光收发装置具备可行性,为后续发展多天线激光通信技术奠定基础,从而可进一步提升数据传输速率,保证战场信息的及时传输。
保证战场数据传输的安全性和稳定性。战场数据传输的安全性和稳定性对于确保作战单元信息优势的全程获取和作战效能的充分发挥至关重要。传统的微波通信技术由于频谱规划的公开性以及信号旁瓣泄露问题,使得敌方极易通过信号侦收设备进行信号的分析和破解,造成安全隐患。同时,成熟的高功率宽带电磁脉冲技术也会使传统的卫星通信技术在战场上被干扰,失去战场制信息权。空间激光通信具有高安全性特点,很难被窃取和干扰,完全避免了传统微波通信技术存在的不足,其极强的方向性波束使得信号的泄露几乎可以忽略不计,且激光通信的高频率和高带宽也将使传统的干扰压制手段失效。
实现近地任务和深空任务高效空间通信。激光通信技术有望使数据传输速率比射频通信提高至少10~100倍,可在从低地球轨道到星际的所有空间区域中大幅提高数据传输速率,使近地任务和深空任务的空间通信更加高效。更高的数据传输速率意味着未来能从太阳系内任何位置传输直播视频,还可增加载人深空探索任务的通信带宽,从而帮助研究人员更快地采集科学数据,研究尘暴或航天器着陆等突发事件,甚至从其他行星表面发送视频。可以想象,空间激光通信网络一旦建立,人类或将开启至月球的快速可靠的数据连接网络,甚至还可以连接至火星和更遥远的星球,为人类征服遥远的星辰提供重要的通信支持。
一网打尽系列文章,请回复以下关键词查看: |
创新发展:习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧 |
热点专题:军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 | 创新教育 | 军工百强 | 试验鉴定 | 影响因子 | 双一流 | 净评估 |
预见未来:预见2016 | 预见2020 | 预见2025 | 预见2030 | 预见2035 | 预见2045 | 预见2050 | |
前沿科技:颠覆性技术 | 生物 | 仿生 | 脑科学 | 精准医学 | 基因 | 基因编辑 | 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 | 太赫兹 | 云计算 | 物联网 | 互联网+ | 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 | 不依赖GPS导航 | 通信 | MIT技术评论 | 航空发动机 | 可穿戴 | 氮化镓 | 隐身 | 半导体 | 脑机接口 |
先进武器:中国武器 | 无人机 | 轰炸机 | 预警机 | 运输机 | 战斗机 | 六代机 | 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 | 反无人机 | 防空反导 | 潜航器 | |
未来战争:未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空站 |反卫星 |
领先国家:俄罗斯 | 英国 | 日本 | 以色列 | 印度 |
前沿机构:战略能力办公室 | DARPA | Gartner | 硅谷 | 谷歌 | 华为 | 俄先期研究基金会 | 军工百强 |
前沿人物:钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普 |
专家专栏:黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 易本胜 | 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨 | |
全文收录:2016文章全收录 | 2015文章全收录 | 2014文章全收录 |
其他主题系列陆续整理中,敬请期待…… |