国外石墨烯最新应用汇总,哪一个能率先突破?
专家库 | 人才库 | 企业库 | 项目库 | 投资机构库 | 招商信息库
来源:石墨邦
由于石墨烯的发现,研究人员在2010年获得诺贝尔物理学奖。我们何时能看到世界上最新颖的材料所生产的产品呢?这篇文章或许能给大家拨开迷雾。
1、利用石墨烯膜可以将盐从海水中分离
地球表面大部分被水所覆盖,但是由于大量的盐的存在,使得我们很难将它当做饮用水的来源。为了解决这个问题,曼彻斯特大学的研究人员已经开发出一种可扩展的、孔径大小均匀的氧化石墨烯薄膜,它可以过滤掉极其微小的盐颗粒,而不过多影响水的流动。
由于石墨烯膜被淹没在水中时会变得膨胀起来,它不能过滤掉那些极其微小的普通盐离子。为此,他们找到一个通过物理方式来控制薄膜在水中膨胀程度的方法。该方法使它们比普通盐离子的孔径更小,从而过滤掉不想要的盐、颗粒和分子。与此同时,这种薄膜仍然允许水流十分顺利地通过。
从长远来看,有研究小组指出,调整孔径大小以过滤特定离子的基本思想可以应用于不同的薄膜,也有着不同的用途。
2、变形或破裂时可变色的石墨烯涂层可检测裂纹
德国莱布尼兹聚合物研究所研究团队开发了一种石墨烯涂层,它在变形或破裂时可改变颜色。例如,机翼和其他飞机部件可以产生微小的裂纹,当受到突然的压力时,可能会导致故障。在这项新的努力中,研究人员已经开发了一种这种材料的涂层,这将使检查员更容易发现可能导致故障的微小裂纹。
通过使用特殊的沉积方法重叠具有有序和无序特征的石墨烯纳米片(GNP),实现了独特的“鱼鳞”结构。通过精细平行多层膜的机械调谐观察到可变结构着色。 此外,结合可变结构着色和电气感测功能的方法,使用几种颜色来解决“交通灯”中的危险报警和安全性系统,他们为材料故障前的危险等级和微裂纹的早期警告带来了第一个有价值的步骤。
3、石墨烯光电晶体管有望用于光学技术
石墨烯是一种薄碳层,可应用于光电方面,研究人员正在努力研发石墨烯光电探测器,这些器件对许多技术都至关重要。然而,由石墨烯制成的典型光电探测器仅仅能小面积感应光,因而也限制了其性能。
目前,研究人员通过将石墨烯与相对质量较大的碳化硅材料相结合,研制出了可被光激活的石墨烯场效应晶体管,因而解决了这个问题。”高性能光电探测器可应用于诸多方面,包括天体物理学高速通信、超灵敏摄像机、感测应用、可穿戴电子设备等。另外石墨烯晶体管阵列会带来高分辨率成像和显示。未来研究方向主要包括探索诸如闪烁体、天体物理学成像技术和高能辐射传感器等。
4、石墨烯有望促进神经细胞再生
一种非常规的工程技术也许能够克服神经再生的障碍。来自爱荷华州立大学的科学家们已经开发出了一种利用喷墨打印机的纳米技术,这种技术可以生成多层石墨烯电路。这种技术的最终结果有望将间质干细胞(形成骨、软骨和脂肪细胞)转化为施旺细胞,这种细胞在促进神经细胞的康复中起着多种作用。
在一份声明中,共同第一作者、爱荷华州的生物化学工程博士后研究员Metin Uz说,“这项技术可能会获得一个更好的方法来分化干细胞。” 然而,改进这种方法可能会影响体内受损神经的修复方式。
根据该团队的研究结果,可以得出结论:“灵活的石墨烯电极可以适应损伤部位,并为神经细胞再生提供了直接的电刺激,这些结果为体内神经再生铺平了道路。”
5、用石墨烯和金去做优良脑探测器
来自韩国的一支研究团队研发出了更高效的神经电极,可以最大限度地减少组织损伤,还能传输清晰的脑信号。通常,电极越小,检测信号越困难。然而,韩国大邱庆北科技研究院的一个团队开发出了一种小型,灵活和清晰的脑信号检测器。
检测器由记录大脑信号的电极组成。信号沿着互联线传到连接器,将信号传输到测量和分析信号的机器上。这些组合的材料增加了探针(探测器)的有效表面积,导电性能和电极强度,同时仍保持柔软性和与软组织的相容性。
这意味着电极可以收缩,但不会减少信号检测。互联线由石墨烯和金的混合物制成。石墨烯是柔软的,金是优良导体。研究人员测试了探针,发现它能清晰读取大鼠脑信号,比标准的平面金电极好得多。 该探针需要在广泛商业化之前进行进一步的临床测试。
6、石墨烯中的可控制电子为开发潜在电子设备提供新契机
科学家第一次在石墨烯中创造出了可调谐的人造原子。研究结果表明,限制用于控制石墨烯电子的技术是可行、可控、可逆的。电子的能量状态是“可调节的”。这种可调性为研究石墨烯中独特的物理电子行为开辟了新途径。此外,它还提供了一种通过使用以石墨烯为主要设备的方法,促进了未来的电子技术,通信和传感器。
罗格斯大学研究人员领导的团队开发出了一种技术,可以稳定地保持和控制修改石墨烯中局部的电荷状态。该小组进一步证明,在外部电场作用下,空位处的准边界状态是可调的。捕获机制可以打开和关闭,从而提供了一种新的范例来控制和引导石墨烯中的电子。
7、石墨烯纳米带可实现超敏感质量检测
中国科学技术大学的研究团队利用悬浮在沟槽上的石墨烯纳米棒,通过单电子晶体管(SET)发现了纳米机械运动与电导之间的联系。
郭国平和他的团队通过丝带测量电流时,有了一些非常显著的发现。当调节施加到色带端部的交流栅极电压的频率时,它他们发现机械运动与单个电子进出带的流动耦合;通过在较高功率下驱动色带,系统进入非线性状态。从这个角度看,血红蛋白和其他典型的蛋白质在这个规模上有质量。
它们还提供了探索超过现有技术解决方案的纳米级现象的途径,可以揭示一系列领域的问题。
8、石墨烯海绵添加剂可用于增强锂电池性能
来自日本NEC公司的研究员钱成开发了一种多孔石墨烯海绵添加剂,也称为Magic G,可用于锂离子电池的阳极和阴极,以提高其速率和功率性能。尽管经过多年的研究和开发,锂离子电池显示出一些很好的性能,但由于充放电能力差和高倍率性能,它们仍然受到低功耗的影响。
钱成开发了一种蜂窝状多孔石墨烯海绵,也被称为“魔术G”(MG),具有高导电性,高比表面积和高电解质吸收能力。海绵已经作为添加剂掺入锂离子电池的阳极和阴极,以提高速率能力和高速率循环性。
由于添加剂引入后而产生的电极特性,对于用于电动车辆的锂离子电池是必不可少的。钱成还期待进一步优化未来的结构,以获得更高的性能。
9、无水环境下,石墨烯氢燃料电池膜可提升电池效率
匹兹堡大学斯旺森工程学院的研究人员发现,石墨烯(二氧化碳和氢气的二维聚合物)具有一种不寻常的特性,它可以形成一种无水的“管道”,也就是说不需要水就可运输质子。无形之中引领了开发氢燃料电池的潮流,这种燃料可用于车辆和其他能源系统。
质子传导膜(PEM)是质子交换膜燃料电池的核心所在,在燃料电池内部,质子交换膜为质子的迁移和输送提供通道。此膜对温度和含水量要求高,当温度过高或湿度下降,这会消耗水膜并阻止质子迁移穿过膜。
约翰逊博士说:“我们的计算机模型表明,由于石墨烯独特的结构,使得它非常适合在无水条件下,通过电路快速地实现质子跨膜和电子传递。这表明将氢燃料电池车做为未来最佳的替代车辆,已指日可待。
10、石墨烯膜可使核去污能量减少100倍
根据曼彻斯特大学的研究,与现有技术相比,石墨烯可有助于核电厂生产重水和去污能耗成本减少超过100倍。Marcelo Lozada-Hidalgo博士领导的团队展示了一种可完全扩展的石墨烯膜原型,这种石墨烯膜能够更有效地生产重水,从而产生更环保并且更便宜的核电。
现在,曼彻斯特集团开发了可完全扩展的原型膜,并展示了中试规模研究中的同位素分离。他们发现高效率的分离将显著降低需要处理的原始同位素混合物的投入量,这降低了资本成本和能源需求。
研究人员认为,超重氢净化的能源效益在未来将会更大,这是全球主要关注的问题。
11、工程奇迹--石墨烯作为电极材料用于电子设备
石墨烯在电子工业中具有极大的发展前景,特别是作为有机发光二极管(OLED)、太阳能电池和可穿戴电子产品的透明导电的电极材料。
现在,作透明导电电极,ITO是最常用的材料。Whelan解释说:“下一步的工作重点是提高转移的石墨烯层的电导率,从而提高OLED的功率效率。我们规划了两个可能的路线:一、我们可以堆叠多个石墨烯层。二、我们可以化学掺杂石墨烯,也就是说我们可以引入影响电性能的杂质。这样可以使石墨烯与ITO更具竞争力。Whelan说,将来,我们希望石墨烯可以成为柔性电子电极的标准材料,例如:用于制造可弯曲的屏幕。
12、研究人员解决了石墨烯的易燃性问题,从而开启大规模生产的大门
石墨烯在生物医学、电子、能源和环境等领域的应用前景十分可观,在许多小型应用领域也取得了成功。但是,因为石墨烯氧化物是一种从石墨中制造石墨烯的中间产物,该产物已被证明具有火灾隐患。
Tian实验室研究人员使用三次或三次以上正电荷的金属离子将石墨烯氧化物剥离成透明膜。这种新形式的碳聚合物材料除了不易燃外,还具有柔韧性、无毒性和强机械性。一个潜在的应用是使用这种不易燃技术开发的石墨烯,来创建一种能够降低加热和冷却成本的节能窗户涂层。
Tian说:“这会有更多的应用程序,我们预计未来的汽车和飞机窗户将比目前更加智能化,还会有夜视应用。
13、石墨烯纳米管混合物提升锂金属电池
莱斯大学的科学家们通过解决长期困扰研究人员的问题:枝晶的问题,创造了一种可充电的锂金属电池,其电池容量是商业锂离子电池的三倍。
由化学家詹姆斯•罗伯茨领导的Rice研究人员发现,当新电池充电时,锂金属均匀地包覆了碳纳米管以共价连接到石墨烯表面的高导电碳杂化材料。如美国化学学会杂志ACS Nano所报道,该混合物代替了用于交换安全能力的普通锂离子电池中的石墨阳极。在Rice大学创建的石墨烯 - 碳纳米管阳极的测试表明,它抵抗可破坏电池的锂树枝状晶体的形成。
Tour说“许多人做电池研究只做阳极,因为做整个包装要困难得多,因此我们必须开发一种基于硫磺的相对的阴极技术,以适应第一代系统中的这些超高容量锂阳极。我们正在中试规模生产这些阴极加阳极的完整电池,并对它们进行测试。”
14、三维石墨烯上的镍钴硫化物核/壳结构用于超级电容器
镍钴硫化物的三维(3D)核/壳结构是在石墨烯上使用一系列水热步骤进行纳米工程而生成的,而用于生长核壳结构的石墨烯是在应用于超级电容器的CVD上生长的。
通过使用NCS纳米管芯作为电子和离子高速迁移的通道,以及CNS纳米片壳作为高活性区假电容材料,合成后的复合材料表现出优异的电化学性能。3D石墨烯层除了作为优异的表面积来支持3D NCS/CNS外,它还提供了镍泡沫集电器和3D NCS/NCS复合材料之间优异的导电性。
这种高性能电极材料可能在未来的储能装置中得到很好的应用。
15、石墨烯可作为筛子过滤水中的离子
目前,随着耗水量越来越大,以及海水污染和环境污染的日益严重,世界上有数亿人无法获得安全饮用水。由于传统的海水淡化过程具有能源密集型和环境破坏性,因此我们迫切需要从海水或污染水中提取洁净水。
曼彻斯特大学的研究人员认为,石墨烯氧化物(GO)膜可以提供一种简单的方法,从饮用水中过滤出不需要的盐和杂质。石墨烯膜存在的缺点是当GO层浸没在水中时,两层或三层水分子将自身插入层间空间中,这样就会扩大了间隙,允许离子和分子通过并降低了材料的选择性。奈尔和他的团队围绕这个缺点找到了一种简单的方法,即将GO层叠在环氧树脂之间,以便限制它在浸入水中时膨胀。通过运用这种方法,物理密封的氧化石墨烯(PCGO)膜可以成功地过滤掉像Na 和K 之类的常见离子,同时允许水通过。
16、电化石墨烯制成细菌灭虫器
石墨烯的应用正逐渐被人们发掘,莱斯大学的研究人员已经用这种材料来制造一个细菌灭虫器。以前已经发现一种称为激光诱导石墨烯(LIG)的材料是抗菌的,现在该团队已经发现,通过添加几伏的电力,这些性能可以被提升一个档次。
Tour说:“这种形式的石墨烯极易抵抗生物膜的形成,这对生物膜的形成具有很大的应用潜力,例如水处理厂,石油钻井作业,医院和海洋应用场合,如对污染敏感的水下管道。使用电力时的高抗菌是一个很大的额外的好处。”
Tour说:“被动生物污损抑制和主动电压诱导的微生物去除的结合使得这是一种非常受欢迎的材料,用于抑制困扰许多行业的自然污染的增长,解决了一个大麻烦。”
17、碳化硅上的石墨烯可以储存能量
通过在碳化硅的石墨烯的完美表面上引入缺陷,瑞典Linköping大学的研究人员增加了材料存储电荷的能力。
进行研究的研究人员通过在Linköping大学开发的方法使用石墨烯制造碳化硅晶体。当碳化硅被加热到2000℃时,表面上的硅原子移动到气相,并且只剩下碳原子。 Mikhail Vagin说:“被称为 “阳极氧化”的电化学过程会破坏石墨烯层,从而产生更多的边缘。我们测量了阳极氧化石墨烯的性质,发现材料储存电能的能力相当高。
MikaelSyväjärvi 说:“碳化硅上的石墨烯可以在比其他类型的石墨烯更大的区域中制造,如果我们可以以受控的方式改变材料的性质,则可以为其它功能定制表面,例如,创建一个具有自己的内置电池的传感器。”
18、利用石墨烯可造出可见光以外的高端相机
在过去的40年中,微电子技术突飞猛进,这主要得益于硅和CMOS(互补金属氧化物半导体)技术,正是基于此,才有可能制造出计算机、智能手机、小巧且低成本数码相机以及我们今天所依赖的大多数电子产品。然而,由于难以将除硅以外的半导体与CMOS结合起来,使得这个平台除微电路和可见光摄像机以外变得更加复杂多样。
现如今这个障碍已经克服了。 ICFO研究人员首次展示了CMOS集成电路与石墨烯的单片集成,由此产生了一种高分辨率图像传感器,它主要是基于石墨烯和量子点(QD)的数十万光电探测器而成。总的来说,这种石墨烯与CMOS的单片式集成的演示能够使光电子应用更加广泛,例如低功率的光学数据通信和紧凑、超灵敏的传感系统。
19、氧化石墨烯使橡胶更坚固
天然橡胶为粘性液体,但添加交联剂和填料颗粒可以生产出固体弹性材料。然而,这个过程是耗费时间和精力的。 现在来自四川和哈佛大学的研究人员发现,石墨烯氧化物(GO)可以在一个简单的步骤中交联和强化橡胶。
曼彻斯特的纳米功能材料集团领导者Vijayaraghavan说:“复合材料包含两部分,一种柔软轻盈的基体和一种强力的填料,总而言之,它们既轻又强。”“这是运动车中使用的碳纤维复合材料或用于护甲的凯夫拉尔复合材料的原理。在这种情况下,我们用石墨烯制成了一种柔软而有弹性但脆弱的橡胶复合材料,所得材料都是更强大和更柔软。”
20、石墨烯为分子电子学提供新功能
由国家物理实验室(NPL)和伯尔尼大学率领的国际研究团队开发了使用石墨烯调节下一代分子电子器件功能的新途径。可以利用这些结果开发更小,更高性能的器件,用于一系列应用,包括分子检测,柔性电子器件,能量转换和存储,以及电阻标准的稳定测量设置。
在科学进步杂志上报道的研究结果表明了基于石墨烯的分子电子学发展的重大变化,分子和石墨烯之间的共价接触的重现性(甚至在室温下)克服了基于造币金属的最先进的技术的当前状态的局限性。
研究结果还将帮助研究人员在电催化和能量转换研究中,通过在其实验系统中设计石墨烯/分子界面,提高催化剂或器件的效率。
21、石墨烯晶体管开启计算机的新时代
中佛罗里达大学助理教授Ryan M. Gelfand是研发团队的一份子,他所在的研发团队现今研发了一种石墨烯晶体管,这种晶体管在只使用现有晶体管百分之一电力的情况下,能使计算机运行速度提升一千倍。而现在,依靠硅晶体管的旧时代已经结束,石墨烯晶体管的新时代就要来临。”
基于逻辑电路的相互联系的石墨烯晶体管系列可以使速度实现飞跃,能使时速接近太赫兹范围——也就是说时速会提升大约一千倍。另外,Gelfand也表示,石墨烯晶体管将会更小,并且效率也会更高,同时会使设备制造商制备工艺更简单并使计算机具备更多的功能。
22、石墨烯未来路在何方?剑桥、麻省理工等科学家这样说
有人预测,石墨烯将取代硅作为电子器件的主要材料,因为它可以使设备的处理速度远远超过穆尔定律,且更轻、更薄、更灵活。另一些人则梦想着石墨烯推动电池的发展,因为它能将当今锂离子电池的能量密度提高很多倍,极大地扩大了电动汽车的使用范围,并在几秒钟内为我们的手机和笔记本电脑充电。
De la Fuente告诉Seeker,石墨烯的第一个广泛的商业应用可能在生物传感领域。在生物传感器之后,电池将成为利用石墨烯独特性能的下一个产品。“石墨烯只是冰山一角,并且才刚刚开始”。石墨烯具有很大的潜力,但我们至少需要花费10到15年才能实现。我们不知道是否会成功,但我对结果越来越满意。”
23、石墨烯纳米胶囊,促进锂硫电池商业化
美国阿贡国家实验室和俄勒冈州州立大学的研究人员,发现了一种新的阴极结构硫化锂电池,这种阴极由包覆多层石墨烯的二硫化锂纳米晶体组成。
在他们实验过程中,研究人员发现Li2具有较高氧化还原活性,电极充电时氧化为硫,放电时又还原回去。在这种电化学转化过程中,石墨烯胶囊可以有效地保存活性硫,因此电极不会膨胀。
他告诉nanotechweb.org :“我们的新工作,克服了传统的硫电极和先前报道的表面复合材料存在的问题。简单和可规模化的制造工艺已经开始发展,这意味着在电动汽车行业,该电极很有可能使Li-S电池商业化,具有很大的潜力。”
24、钌原子附着石墨烯上制造高效燃料电池
莱斯大学科学家通过将单一的钌原子附着到石墨烯上,为高性能燃料电池制造了耐用的催化剂。
催化剂驱动氧化还原反应,使燃料电池将化学能转化为电能,电极通常由铂制成,其能够抵抗电池电荷电解质的酸性。但铂金是昂贵的,科学家已经研究了几十年,希望可以获得适当的替代品。化学家James Tour说,他的实验室与莱斯和中国的同事们开发了新的材料,钌原子和石墨烯组合可能符合要求。在测试中,其性能与传统的铂基合金、最佳铁氮掺杂石墨烯的性能相当。
25、石墨烯血液透析膜
现今的商业透析膜分离分子十分缓慢,部分原因是由于它们的组成所致:商业透析膜相对较厚,并且作为可以穿过这种致密膜的“孔”蜿蜒分布,因此靶分子难以快速通过商业透析膜。
现在麻省理工学院的工程师已经从石墨烯片中制备出了一个功能性透析膜,石墨烯为一层单一的碳原子,以与铁丝网结构相似的六边形一样端对端连接。麻省理工学院机械工程系博士后PiranKidambi表示:该研究小组的研究结果表明,石墨烯可以改善膜技术,特别是对于实验室规模的分离过程、以及潜在的血液透析等应用领域。
26、石墨烯上的纳米电子器件,为电子产品微型化开辟了新的途经
科学家们在电子器件微型化的道路上不断前进,如今已可以将某些必要的电子器件(如二极管和隧道效应半导体结)在原子精度层面上结合于单个石墨烯线(纳米带)中。
经过反复讨论,阿尔托大学的Peter Liljeroth与乌得勒支大学的Ingmar Swart敲定了方案。他们试图通过在原子精度层面制造石墨烯结构来解决控制电流的问题。他们发现,石墨烯的电子性能可以通过将其制成石墨烯纳米带(非常窄的条带)来控制,并且利用了先进的微观技术来确定所得结构的电子特性和电子运输特性。
Peter Liljeroth说:“这是我们第一次创建出隧道效应半导体结,并且真正了解到它的具体原子结构。另外,通过实时测量通过电子器件的电流,我们还可以定量地分析理论与实验方面的差别。”
27、石墨烯太阳能电池将“随处可见”
近日,研究人员研发出一种利用石墨烯制造太阳能电池的新技术,这种太阳能电池可以安装在玻璃、塑料、纸张和胶带等的表面上。
该太阳能电池将低成本的有机(含碳)材料与石墨烯电极进行了结合。由有机化合物制成的光伏太阳能电池拥有比现在普遍使用的无机硅太阳能电池更多的优点,例如便宜、易于制造,并且具有柔软、轻量级的特点,摆脱了重量大、材质硬和脆性易折的缺点,因此将更容易运输。
研究人员未来的目标就是在不牺牲透明度的前提下提高石墨烯有机太阳能电池 的效率,但这还有很长的路要走。他们现在也正在考虑如何将太阳能电池扩大到覆盖整个窗户和墙壁所需的大面积,这样一来它们可以更有效地发电,同时还能够对人眼保持几乎不可见。
28、石墨烯超级电容器打印初试告捷,可穿戴时代不再遥远?
近几年,石墨烯一直是研究热门,一项来自曼彻斯特大学的研究证明,只要通过简单的丝网印刷技术就可直接将柔性电池类设备印刷到纺织品上。
目前可穿戴技术最大的难题是:如何在不配备众多电池组的情况下给设备供电?曼彻斯特大学的研究团队认为,比较恰当的解决办法是用超级电容器代替电池组。他们将可导电的氧化石墨烯油墨印刷到棉织物上,成功制得固态的柔性超级电容器。
为了进一步实现电子设备的可穿戴化,下一步该做的是发展一种简单可工业量产化的印刷技术来生产这种超级电容器,这将对下一代多功能可穿戴电子产品的实现至关重要。
一网打尽系列文章,请回复以下关键词查看: |
创新发展:习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 科研管理 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧 |
热点专题:军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 | 创新教育 | 军工百强 | 试验鉴定 | 影响因子 | 双一流 | 净评估 |
预见未来:预见2016 | 预见2020 | 预见2025 | 预见2030 | 预见2035 | 预见2045 | 预见2050 |
前沿科技:颠覆性技术 | 生物 | 仿生 | 脑科学 | 精准医学 | 基因 | 基因编辑 | 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 | 太赫兹 | 云计算 | 物联网 | 互联网+ | 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 | 不依赖GPS导航 | 通信 | 5G | MIT技术评论 | 航空发动机 | 可穿戴 | 氮化镓 | 隐身 | 半导体 | 脑机接口 | 传感器 |
先进武器:中国武器 | 无人机 | 轰炸机 | 预警机 | 运输机 | 直升机 | 战斗机 | 六代机 | 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 | 反无人机 | 防空反导 | 潜航器 |
未来战争:未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空战 | 反卫星 |
领先国家:美国 | 俄罗斯 | 英国 | 德国 | 法国 | 日本 | 以色列 | 印度 |
前沿机构:战略能力办公室 | DARPA | 快响小组 | Gartner | 硅谷 | 谷歌 | 华为 | 阿里 | 俄先期研究基金会 | 军工百强 |
前沿人物:钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普 |
专家专栏:黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 易本胜 | 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨 |
全文收录:2017文章全收录 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录 |
其他主题系列陆续整理中,敬请期待…… |