查看原文
其他

季维智院士:干细胞和基因编辑的优势与挑战

远望智库 战略前沿技术 2022-04-11


远望智库:与智者同行,为创新加速

专家库 | 人才库 | 企业库 | 项目库 | 投资机构库 | 招商信息库 | 前沿特工队招募


本文:大数据文摘

作者:季维智



“金刚狼”、“蜘蛛侠”,这些好莱坞大片里的超级英雄,都有一个共同特点,那就是他们都通过基因编辑技术改造了生殖细胞。

现实生活中,这种程度的改造技术或许是遥不可及。但是,利用基因编辑技术治疗人类的一些疾病是否可以呢?

或许新闻报道中不时的会有相关消息曝出,但是有时候新闻的夸大或者危言耸听总是耐人寻味... ...

在10月27日,麻省理工Meet35全球科技青年论坛中季维智院士就这一生物科技进展给出了详细的介绍。

下面是季维智院士的演讲,请欣赏:

生命从受精卵和精子受精开始,从此我们要开始面对漫漫人生路。家长期望孩子健康成长、取得好成绩。但是慢慢的我们面临了很多问题,这些问题有环境方面带来的,有自身身体带来的。

要想解决这些问题,就需要解决一些重要的基础问题和开发技术。

在本世纪有两个最重要的成果,干细胞和基因编辑。

干细胞给人类健康带来了很大的希望,全世界临床研究注册中干细胞研究超过7000例,但还没有真正用于临床。


这是因为干细胞存在一些基础和应用的问题。理想中的干细胞能分化成我们所需的细胞、组织或者器官,比如希望用干细胞修复肝、肾、心等器官和组织。要使干细胞发挥功能,首先必须具有多能性,但到现在为止人们对多能性的了解还不深入,所以必须进一步研究。

总的来说,干细胞还有两个重要的科学问题没有解决:

  • 干细胞在不同阶段具有不同多能性的机制是什么。

  • 怎样拿到能够形成多种类型干细胞的细胞。

干细胞具有多能性有两个黄金标准:即是否能形成生殖腺的嵌合和是否能形成4倍体补偿。目前为止,只有啮齿类能够做到这一点,而包括我们人和猴子等灵长类还不能完全做到。

能否真正拿到初始生殖干细胞,实现生殖腺的转移仍是一个问题。

2012年,美国科学家认为灵长类的干细胞没有多能性,其标准是不能实现嵌合体。但幸运的是,2015年,我们实验室证明可以实现嵌合体。这项工作的意义在于,如果拿到灵长类的多能性干细胞,就为将来器官组织的修复奠定了理论基础。

拿到多能性干细胞是希望它能形成器官或组织,但它是否会形成肿瘤等必须事先经过动物来检测。

如果要用干细胞进行治疗,首先我们要解决它的安全性问题。干细胞具有多能性,这种多能性就意味着它可以在身体内不断增殖,但如果干细胞像肿瘤一样无限增殖下去,长到不该长的地方,就形成了癌症或肿瘤。

因此,我们需要在干细胞治疗之前,对它进行安全性检测。当然除了安全性检测外,如果想要让细胞像药一样可以用于治疗,它就要像药一样经过很多复杂的程序。比如要知道我们用多少剂量,一个人要用多少药等等。

干细胞和药还不同,因为它有不同的细胞类型,我们要用什么样的细胞类型治疗疾病,也是必须解决但尚未解决的问题。

关于基因编辑。2014年时MIT Under35的领军人张锋,利用的就是古细菌当中的Cas9系统进行基因编辑。在此之前,非常传统的基因编辑是把要编辑的基因用病毒载体注射到身体里,这种方法效率比较低。

1974年,第一次在小鼠上成功地用病毒载体进行了基因编辑,但这个方法对高等的灵长类动物效率非常低。直到14年后,在2001年才有了第一篇关于猴子基因编辑的论文,但那只猴子也没活下去。后来,从2001年到2014年差不多14年间,一共只有六篇相关报道,但都不是稳定的转基因的工作。

CRISPR和TALEN技术,即精准基因编辑的这些技术给大家带来了希望。2013年,《Nature》发了一篇文章,核心内容是这个技术能否用到非人灵长类。

非人灵长类的重要性在于它可以帮助我们了解人类疾病的机制,首先是非人灵长类对于了解人类疾病非常重要,第二,在基因编辑中、靶向基因编辑中或者精确基因编辑中如果能用到非人灵长类,那么未来或许人类也可以应用。

那么,哪一个国家将会实现第一个非人灵长类的基因编辑呢?

我们实验室在2014年发了两篇文章:分别使用CRISPR和TALEN技术编辑猴子的基因。这个工作当时也被《麻省理工科技评论》评为2014年的十大科技突破。

之所以建立灵长类模型有两个原因:第一,我们可以得到人类疾病高度相似的模型;第二是我们可以理解疾病的机制。

举一个例子,如果疾病是X染色体上的基因疾病,这个基因缺失导致发病,引起一些社会行为的异常,有点像自闭症,同时脑发育也会异常。但等发病的时候,脑发育已经异常了,无法研究它是如何导致脑发育异常,但用猴子的模型,通过扫描,可以在很早期就看到这些病到底是如何在脑内发展的。

现在实验室采用的基因编辑技术,大多数是以猴子为主题建立的模型,它的表型不一定非常符合人类。

因此后来又应用了在其他技术上发展起来的碱基编辑技术。因为我们人类的很多疾病都是一个碱基的突变引起的疾病。

当然碱基编辑后来发展了两个类型,即BI和AB技术,简而言之,一个是简单的,另外一个是改进的。

用这个技术做基因敲入,有意思的是,如果碱基从C变成T就是一种引起脑衰的病,简称STPS。而碱基由A变成G的时候,就会引起心脏病。

当然了,基因编辑也存在一个问题,基因编辑是放到准确的位置上还是到其他的DNA上编辑。目前这个问题一直在争论,但是在猴子上做的实验,尚未发现基因的脱靶效应。

如果要用基因编辑技术来解决人类问题、治疗人类疾病,目前的技术中整个系统尚未成熟,如果要用现在的病毒载体将这些分子送到体内,还是有限制的,所以未来还有很长的路要走。

一网打尽系列文章,请回复以下关键词查看:
创新发展习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 科研管理 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧
热点专题军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 创新教育 军工百强 试验鉴定 | 影响因子 | 双一流 | 净评估
预见未来预见2016 |预见2020  | 预见2025预见2030  | 预见2035 预见2045  | 预见2050
前沿科技颠覆性技术 | 生物 仿生 | 脑科学 | 精准医学 | 基因 |  基因编辑 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 太赫兹 | 云计算 | 物联网 互联网+ 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 不依赖GPS导航 | 通信 5G | MIT技术评论 | 航空发动机 | 可穿戴 氮化镓 | 隐身 | 半导体 | 脑机接口 | 传感器
先进武器中国武器 | 无人机 | 轰炸机 预警机 | 运输机 | 直升机 战斗机 | 六代机 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 反无人机 | 防空反导 潜航器
未来战争未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空战 反卫星
领先国家美国 | 俄罗斯 | 英国 | 德国 | 法国 | 日本 以色列 | 印度
前沿机构战略能力办公室 | DARPA 快响小组 | Gartner | 硅谷 | 谷歌 | 华为 阿里 | 俄先期研究基金会 | 军工百强
前沿人物钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普
专家专栏黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 易本胜 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨
全文收录2018文章全收录 | 2017文章全收录 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录
其他主题系列陆续整理中,敬请期待…… 

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存