澄清:5G十大误解
专家库 | 人才库 | 企业库 | 项目库 | 投资机构库 | 招商信息库 | 前沿特工队招募
来源:网优雇佣军(hr_opt)
作者:通信
最初的5G采用NSA模式部署,即依托于现有4G来扩充网络容量和覆盖。最初的5G与4G非常相似,网络部署也主要利旧现有4G基站资源,这是一次从4G到5G的平滑演进过程。
事实上,不管是NSA还是SA部署模式,4G将在较长时间内继续提供语音、数据和物联网业务,与5G网络共存。
至于我们通常讲的“5G改变社会”,5G要对社会产生革命性的规模影响,还需要时间来孵化。
从单站规模看,5G早期利旧4G基站及配套资源共站部署,可较大节省投资成本。
通常人们认为的“5G投资大”,是因为5G需要新采用更高的频段、建设更多的小基站,从而导致整体投资加大。但这也不能一概而论,要看运营商具体部署方案来具体分析,后面章节我们将会提到。
至于5G资费问题,肯定会比4G便宜,因为5G频谱效率成倍提升,每BIT成本成倍下降,必然会在激烈的价格战趋势下,资费越来越便宜。
同时,由于5G网络切片使能服务移动宽带和物联网多样化应用场景,未来5G资费绝不会依靠单一的流量收费,而是基于“体验优先”的多样化的资费标准,大可不必有当年4G之初流量“一晚一套房”的担忧。
您可以用新频段建设5G,但没有人阻止您重耕2/3/4G频段或使用现有手中的频段建设5G。
在R15版本中,5G NR定义了从sub 6GHz到毫米波的多个频段范围,如下图:
其中,部分是5G引入的新频段,部分是LTE老频段,以使5G不受限于频谱资源,在低、中、高频段均可部署。
比如,中国移动和美国Sprint在2.6GHz上部署5G,正是采用的原LTE频段n41;而美国T-mobile计划在600MHz上部署5G,采用的是原LTE频段n71。
5G为什么需要小基站?因为更高的频段意味着无线信号覆盖范围更小,就需要建设更多的基站。
但是,既然5G不受限于频谱资源,在低、中、高频段均可部署,也就意味着5G有宏基站,也有小基站,但5G不能和小基站画等号。
通常,运营商在考虑5G全覆盖时,会用低频段做覆盖层,中频段做容量层,毫米波高频段做高容量层(热点)。
如上图可知,覆盖层仍然是宏站,小/微基站并非全网部署,运营商当然不会那么傻,部署这么多小/微基站可是要花大成本的啊。
一提到5G,就让人联想到“大带宽、高速率”,但是,5G具备灵活的物理层设计,支持从5MHz到100MHz(毫米波频段400MHz)的信道带宽。
也就是说,运营商仅拥有5MHz的频率带宽,理论上也是可以建设5G网络的。比如,美国Dish就是计划利用窄带宽建设NB-IoT网络,再演进到5G物联网,专注于物联网业务。
再来理论计算一下,4G LTE的最小信道带宽为1.4MHz,5G支持最小信道带宽为5MHz,若一家运营商仅拥有6.4MHz带宽,理论上也是可以通过非独立组网(NSA)建成一张4G和5G双连接网络的。
Massive MIMO可大幅提升频谱效率,提升容量和覆盖范围,但Massive MIMO也有自身的挑战,主要是:天线会更大更重,铁塔可能无法承受负荷,且需进行功率升级和回传升级,它适用于一些站点,但所有站点部署Massive MIMO并不是经济的做法。
通常低频段覆盖层会采用4T4R,中频段容量层采用8T8R或64T64R,毫米波高频段采用128*128或更高阶的Massive MIMO。
有时候,时延指数据包从发送端到接收到所需要的时间,简单来说,Ping延迟的一半,也称为单向时延。
有时候,时延指数据包传送的往返时间,这与ping延迟相同。
在3GPP和ITU中,还定义了控制面时延、用户面时延。控制面时延,指从空闲状态到连接状态的转换时间;用户面时延指IP层数据包传送的单向时延。
在不同应用场景下,5G的时延要求也不一样。在eMBB场景下,5G NR用户面时延(单向)为4ms;在URLLC场景下,5G NR用户面时延(单向)为0.5 ms;控制面时延为10ms。
低时延5G刚好面向未来广泛的5G应用,比如VR/AR时延需求为7-12ms,工业机器手臂时延需求为1-10ms。
过去20年来,蜂窝网络与Wi-Fi一个从室外走向室内,一个从室内走向室外,两者相辅相成,共同承担无线流量。蜂窝网络从4G向5G演进,Wi-Fi技术也同时在演进。
5G高频段信号更难走进室内,室内覆盖存在短板,面向不断发展的视频和物联网业务,这个世界仍将需要Wi-Fi来补充覆盖和容量。5G不是取代Wi-Fi,而是两者共同做大无线生态规模。
自动驾驶需不需要5G,要看是哪个等级。
自动驾驶从“解放双手”到“解放双眼”,再到无人驾驶,共分为5个等级(L1-L5)。
如果说L1到L4的自动驾驶可以通过本地端的摄像头、雷达、激光雷达等传感器收集数据实现本地决策控制,但到了L5无人驾驶阶段,需通过网络通信扩展感知范围、弥补本地传感器所欠缺的感知能力,以达到100%的安全性决策。
简单的讲,本地传感系统让汽车实现了“眼观六路”,但自动驾驶也需要网络通信来实现“耳听八方”。
4G移动互联网时代,产业链的玩家主要是运营商、设备商、手机商和互联网企业。但5G定义了eMBB(增强型移动宽带)、URLLC(超高可靠超低时延)、mMTC(大规模机器连接)三大应用场景,面向包括汽车、农业、制造、健康、医疗等全行业,因此我们说“4G改变生活,5G改变社会”,需要全行业来共同推动5G新未来。
一网打尽系列文章,请回复以下关键词查看: |
---|
创新发展:习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 科研管理 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧 |
热点专题:军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 | 创新教育 | 军工百强 | 试验鉴定 | 影响因子 | 双一流 | 净评估 |
预见未来:预见2016 |预见2020 | 预见2025 | 预见2030 | 预见2035 | 预见2045 | 预见2050 |
前沿科技:颠覆性技术 | 生物 | 仿生 | 脑科学 | 精准医学 | 基因 | 基因编辑 | 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 | 太赫兹 | 云计算 | 物联网 | 互联网+ | 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 | 不依赖GPS导航 | 通信 | 5G | MIT技术评论 | 航空发动机 | 可穿戴 | 氮化镓 | 隐身 | 半导体 | 脑机接口 | 传感器 |
先进武器:中国武器 | 无人机 | 轰炸机 | 预警机 | 运输机 | 直升机 | 战斗机 | 六代机 | 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 | 反无人机 | 防空反导 | 潜航器 |
未来战争:未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空战 | 反卫星 |
领先国家:美国 | 俄罗斯 | 英国 | 德国 | 法国 | 日本 | 以色列 | 印度 |
前沿机构:战略能力办公室 | DARPA | 快响小组 | Gartner | 硅谷 | 谷歌 | 华为 | 阿里 | 俄先期研究基金会 | 军工百强 |
前沿人物:钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普 |
专家专栏:黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 易本胜 | 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨 |
全文收录:2018文章全收录 | 2017文章全收录 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录 |
其他主题系列陆续整理中,敬请期待…… |