电话:010-58330898 手机:18501361766
微信:tech99999 邮箱:qianyanjun@techxcope.com
在战场上使用常规GPS设备的士兵有被敌方针对GPS信号的行动拒绝位置数据的危险。ARL的量子实验旨在为士兵提供不依赖于恒定外部信号的便携式定位、导航和授时系统。图片来源:美国陆军照片
激光探测的玻璃电池中的原子可以作为微波接收器,其作用方式与传统的金属天线完全不同,这是CCDC陆军研究实验室(ARL)研究人员的众多发现之一。在那里进行的量子技术实验可能为新的战场设备打开大门,这些设备为士兵对抗敌人提供关键优势。图片来源:ARL照片
这名美军士兵稳步前进,在穿越一个地质年代久远、技术年代却在未来数年的战场时,他在茂密的植被中艰难前行。由于敌人让星载GPS信号失效,士兵求助于他的内部位置定位单元,该单元将他的位置精确到仪表上。他的外部传感器套件提醒他敌人的空中和地面部队的存在,但他们足够远,没有造成任何后果。这引起了他的怀疑,因为他们似乎奇怪地毫无防备地离开了士兵所在的区域,甚至无人看管。他转向地面扫描器,发现只有他一个人在地面上。他的重力传感器探测到前方有一个加固的隧道结构,向前延伸了一段距离。它似乎是用钢筋混凝土建造的,顺便说一下,它的建造方式,可能隐藏了大量的敌军和他们的物资。他不想让他们出现并占他的上风,他选择向总部发送加密信息,并确信它不会被破解。利用他的便携式精确导航系统,他能够提供这个神秘掩体的精确坐标,以及他自己的位置。然后,他后退了几步,一队机器人无人机用精确制导的弹药攻击地堡,这些弹药穿透地面,摧毁地下的一切。当尘埃落定,他安然无恙。然而,他确实需要在曾经构成隐藏敌人基地的瓦砾周围找到一条新的前进道路。这个未来士兵所执行的每一个动作——除了那些由他自己的思维过程驱动的动作——都是由整个部队中部署的量子技术实现的。这些系统目前是美国陆军作战能力发展司令部(CCDC)陆军研究实验室(ARL)的研究目标,该实验室与其他国防实验室、工业和学术界合作。ARL正在探索许多可以直接应用于士兵的量子技术,但它的科学家也希望发现迄今为止未知的应用,出现在实验室的发现和实验。ARL量子信息科学与定位、导航与授时(PNT)基础研究项目首席科学家弗雷德里克·法特米(Fredrik Fatemi)说:“量子有很多东西可以提供。这些问题异常复杂,但回报是值得的。对士兵的影响对我们测量时间和战场以及通信和计算的能力构成了军队的关键职能。”科林·里斯(Colin Reese)是ARL陆军量子、信息科学和PNT基础研究项目的研究负责人,他解释了ARL的观点。他说:“我们认为量子技术是一种长期的革命性变革,它将影响军队对PNT和目标的感知方式,我们的家人在哪里,成像,计算,我们在网络上的交谈方式……以及整个陆军作战空间的多个应用。”里斯继续说,许多工程问题仍然停留在基础研究/组件层面。解决这些问题对于将量子技术从实验室迁移到加固的环境中是必要的。他说:“我们不仅要弄清楚我们可以把它带到哪里,还要弄清楚我们必须克服哪些问题才能把它带出实验室。”法特米对此进行了阐述。他指出:“量子信息科学和量子力学利用了自然界的独特特性,这些特性可以彻底改变传感器、时钟、通信和计算,所有这些都可以对军队的任务产生巨大影响。”他建议,拥有更好的时钟和加速和旋转传感器,可以帮助士兵在全球定位系统被拒止的环境中。磁强计等现场传感器可以帮助识别地下的金属物体和隧道。量子计算可以解决经典的棘手问题,特别是对于密码学。法特米说:“对于量子信息科学来说,理解这些非直观的特性以及它们如何应用于作战人员,本质上取决于精确的测量。这需要非常了解你的环境,知道如何测量和控制磁场,知道如何测量加速度和系统的其他扰动。”法特米将量子描述为一个普遍的领域,并提出几乎任何普通的传感器都可以利用量子原理增强。ARL负责量子研究的部分职责包括就服务部门应在量子技术方面进行的负责任投资向陆军提供咨询。法特米说:“我们正在寻找可能的艺术,然后与其他军队和工业伙伴合作,将其磨练成实用的东西。”法特米指出,尽管ARL与行业合作伙伴合作,但商业部门和学术界并不一定与陆军实验室有相同的目标。他们的应用程序并不面向陆军作战,更不用说为战场而加固。法特米提供的第一个可能受益于ARL量子工作的应用是原子钟。这些设备构成了大多数PNT系统的主干,它们是GPS替代品的核心。近期的研究重点是开发更轻便的原子钟和计时装置,以及加速度计、旋转传感器和陀螺仪等惯性传感器。他指出,这些新系统不需要与GPS星座就位置和时间进行连续通信。另一项可能紧随其后的能力是隧道或掩体探测。量子技术将被用来测量质量异常,利用引力场的变化来指示,在那里敌人的部队或核材料可能隐藏在视线或表面攻击范围之外。然后是量子纠缠,其中两个遥远的粒子之间建立了独特的关联。通信和计算的安全性将从这项研究中受益,这项研究将直接应用于陆军需求。里斯强调,除了更好的安全性,通信将能够容纳更多的用户和更多的带宽通过网络。传感器将增强无线电频率和电子战能力,既能探测威胁,又能抵抗威胁。而精确制导弹药将更加精确,需要更少的人与人之间的相互作用。法特米说:“我们在量子科学方面的研究所做的一件事是,它使我们能够以非传统的方式思考经典问题。”例如,这包括以科学家们甚至没有预料到的方式开发新的传感器。就需求而言,使用量子技术的近期进展“规划得很好”,但随着研究的进展,其他领域正在向量子能力开放。一个领域,电场传感,传统上使用天线来测量信号。但是研究已经揭示了量子系统可以用一种不同于传统天线的完全非典型特性来测量电场。他认为,能够利用量子科学感知电磁信息,可能会产生一些甚至没有被考虑过的独特能力。法特米解释说,研究人员把各种不同原子的奇异态看作量子信息处理平台。他指出,这是一种与传感截然不同的应用,但在量子信息处理方面的投资导致了在电场传感中使用原子的另一条路径。这是一个旨在利用旧原理的量子研究导致新应用的例子。他指出,当今的许多传感器依赖于操纵单个原子。最好的原子钟也是如此,它依赖于单个原子的气体。法特米说,在寻找能够模仿原子行为的材料时,科学家们一直在探索量子的一个分支,即材料科学。类似的方法导致了激光的发展,这些发展起源于量子信息科学的进步。里斯说:“量子意识到的很多收获都是在一些切线上,由于量子力学的普及程度,它处于材料、计算机、信息和工程科学的交叉点。你可以把这些分支纳入,比如说,材料科学,在材料科学中,你可以设计一些材料,如果你没有沿着量子的道路走下去,你不一定会有这些材料,”他解释说。 里斯指出:“量子是世界上的一个研究领域,是国家间的下一次‘太空竞赛’。许多国家正在投入大量资金进行研究,希望能真正对它们的传感、通信和计算产生影响。”他继续说:“我们在做研究的同时,也在学习哪里是我们投资研究的好地方,以及与任何追求相同应用的友好国家、公司或学术界合作的好地方。这其中有一部分是理解世界在哪里推卸障碍,世界在哪里追逐错误的窗口。”法特米承认,要将量子科学带入技术领域,还需要克服“一整套”技术挑战。先进的激光、真空系统和低成本、战场能力强的探测系统在实现之前必须跨越几个障碍。设计必须加固和充分有效地在战场上工作,这需要比在商业部门更严格的标准。除技术挑战外,这项努力还必须解决劳动力培养问题。法特米指出,ARL的科学家们对量子应用增强甚至革新已知能力的前景充满热情。“但让我们很多人兴奋的是问号。我们将会发现什么新奇的东西,我们将会处理和发展什么新奇的方法来保护我们的士兵,并给予他们如果我们只是遵循线性研究方法就不会有的能力?”https://www.afcea.org/content/quantum-technologies-suit-battlefieldQuantum Technologies Suit Up for the Battlefield
Uncertain about the future, ARL scientists explore new realms.The U.S. Army soldier proceeds methodically, picking his way through dense vegetative growth as he traverses a battlefield that geologically is ages old, but technologically is years in the future. With the enemy rendering satellite-borne GPS signals ineffective, the soldier resorts to his internal position-location unit that pinpoints his spot to the meter. His external sensor suite alerts him to the presence of enemy air and ground forces, but they are far enough away to be of no consequence yet. That raises suspicions in his mind, as they seem to have left the soldier’s area strangely undefended—even unattended.Turning to his ground scanner, he discovers that he is alone only above the surface of the Earth. His gravitational sensors have detected a fortified tunnel structure just ahead of him that stretches for some distance forward and to the sides. It seems to be built with concrete reinforced by metal bars, and by the way it is constructed, it probably is concealing a large number of enemy troops and their materiel.Not wanting to allow them to emerge and gain the upper hand over him, he opts to send an encrypted message back to headquarters, confident that it cannot be broken. Using his portable precision navigation system, he is able to provide the exact coordinates for the mystery bunker, along with his own position. Then, he steps back as a team of robotic unmanned aerial vehicles attack the bunker with precision munitions that penetrate the ground and lay waste to whatever is beneath. When the dust settles, he is unscathed. He does, however, need to find a new way forward around the rubble that once constituted a hidden enemy base.Every action conducted by this future soldier—except for those driven by his own thought processes—was enabled by quantum technologies deployed throughout the force. These systems currently are the targets of research by the U.S. Army’s Combat Capabilities Development Command (CCDC) Army Research Laboratory (ARL), which works in partnership with other defense laboratories, industry and academia. The ARL is exploring many quantum technologies that would have direct applications to the war-fighter, but its scientists also expect to uncover hitherto unknown uses that emerge with laboratory discoveries and experimentation.“Quantum has a lot to offer,” says Fredrik Fatemi, chief scientist for the ARL quantum, information science and position, navigation and timing (PNT) essential research program. “These problems are extraordinarily complex, but the reward is worth it. The impact on the soldier on our ability to measure time and fields and to communicate and compute [constitutes] critical functions for the Army.”Colin Reese, ARL Army research lead for the quantum, information science and PNT essential research program, explains the ARL perspective. “We see quantum as that long-term, revolutionary change that is going to impact the way the Army senses for both PNT and targets, where our folks are, imaging, computing, how we talk on the network … and really, multiple applications across the entire Army warfighter space,” he states.Reese continues that many engineering problems remain at the basic foundational research/component levels. Solving these problems will be necessary to migrate quantum technologies out of the laboratory and into the ruggedized environment.“We have to figure out not only where we can take this, but also what are the problems we have to overcome to move it outside the laboratory,” he says.Fatemi expands on that perspective. “Quantum information science and quantum mechanics leverage unique properties of nature that can revolutionize sensors, clocks, communications and computing—all of which can have huge impact on the Army mission,” he points out. Having better clocks and sensors for acceleration and rotation can aid a soldier in a GPS-denied environment, he suggests. Field sensors such as magnetometers can help identify metallic objects and tunnels underground. And quantum computing can solve classically intractable problems, particularly for cryptography.“For quantum information science, understanding the nonintuitive properties and how they can be used for the warfighter, intrinsically relies on precision measurement,” Fatemi says. “This entails knowing your environment very well, knowing how to measure magnetic fields very well and control them, knowing how to measure accelerations and other perturbations to the system.” Describing quantum as a pervasive field, Fatemi offers that almost any normal sensor can be enhanced using quantum principles.Part of the ARL’s responsibility for quantum research includes advising the Army on the responsible investments the service should make in quantum technologies. “We are looking to find the art of the possible and then working with other Army and industry partners to hone that down to what is practical,” Fatemi says.While the ARL is engaged with industry partners, the commercial sector and academia do not necessarily have the same goals in mind as the Army lab. Their applications are not geared toward Army operations, let alone ruggedized for the battlefield, Fatemi points out.The first application likely to benefit from ARL quantum work is atomic clocks, Fatemi offers. These devices form the backbone of most PNT systems, and they are at the heart of alternatives to GPS. Nearer-term research is focusing on the development of more portable atomic clocks and timekeeping devices, as well as inertial sensors such as accelerometers, rotation sensors and gyroscopes. These new systems would not need to continuously communicate with the GPS constellation for position and time, he notes.Another capability that might come on the heels of the development is tunnel or bunker detection. Quantum technology would be used to measure mass anomalies, indicated by variations in gravitational fields, where enemy forces or nuclear materials might be hidden from sight or surface attacks.Then there is quantum entanglement, in which unique correlations are established between two remote particles. Security in communications and computing will benefit from this research, which would be applied directly to Army needs.Reese emphasizes that, in addition to better security, communications would be able to accommodate more users with more bandwidth across the network. Sensors would have enhanced radio frequency and electronic warfare capabilities, both for detecting threats and for resisting them. And precision-guided munitions would be more precise and require less human interaction.“One thing our research in quantum science does is it allows us to think about classical problems in nontraditional ways,” Fatemi says. This includes, for example, developing novel sensors in ways the scientists weren’t even anticipating. Near-term advances using quantum technologies “are pretty well mapped out” in terms of their needs, but other areas are opening up to quantum capabilities as research advances.One area, electric field sensing, traditionally employs antennas to measure signals. But research has unveiled quantum systems that can measure electric fields in a different way with totally atypical properties from conventional antennas. Being able to sense electromagnetic information using quantum science could lead to unique capabilities that have not even been considered, he suggests.Fatemi explains that researchers were looking at exotic states of various different atoms as quantum information processing platforms. That’s a very different application from sensing, he points out, but investments made in quantum information processing led down this alternate path for using atoms in electrical field sensing. This is one case in which quantum research aimed at exploiting older principles led to a new application.Many of today’s sensors rely on manipulating individual atoms, he points out. The same holds true of the best atomic clocks, which rely on gases of individual atoms. In searching for materials that can mimic atom-like behavior, scientists have been exploring an offshoot of quantum into material science, Fatemi says. Similar approaches have resulted in laser developments that have origins in quantum information science advancements.“A lot of the gains that quantum realizes are in some of the tangents,” Reese offers. “Because of how pervasive quantum mechanics is, it sits at the intersection of material, computer, information and engineering sciences. You can have these branches into, say, material science where you are designing materials that you wouldn’t necessarily have had if you weren’t going down the quantum route,” he explains.“Quantum is one of those research areas throughout the world that is kind of that next ‘space race’ between countries,” Reese notes. “A lot of countries are dumping a lot of money into research hoping to really have that impact on their sensing, communications and computing.“While we’re doing our research as well, we are learning where are the smart places to put our research money and to partner with any friendly country, company or academia that are chasing the same applications,” he continues. “Some of this is understanding where the world is pushing the bar, and where is the world chasing the wrong window.”Fatemi admits that “a whole suite” of technological challenges remains to be overcome to move quantum science into technology. Advanced lasers, vacuum systems, and detection systems that are low-cost and battlefield capable must hurdle several obstacles before they are realized. Designs must be ruggedized and fully effective to work on the battlefield, which requires far more stringent standards than found in the commercial sector. And in addition to technology challenges, the effort must address workforce development.ARL scientists are enthusiastic at the prospects of known capabilities being enhanced or even revolutionized by quantum applications, Fatemi notes. “But what gets a lot of us excited are the question marks,” he reports. “What novel things are we going to find, and what novel ways are we going to deal with and develop to protect our soldiers and give them capabilities that they wouldn’t have had if we had just followed a linear approach to research?”
一网打尽系列文章,请回复以下关键词查看:
|
---|
创新发展:习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 科研管理 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧 |
热点专题:军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 | 创新教育 | 军工百强 | 试验鉴定 | 影响因子 | 双一流 | 净评估
|
预见未来:预见2016 |预见2020 | 预见2025 | 预见2030 | 预见2035 | 预见2045 | 预见2050
|
前沿科技:颠覆性技术 | 生物 | 仿生 | 脑科学 | 精准医学 | 基因 | 基因编辑 | 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 | 太赫兹 | 云计算 | 物联网 | 互联网+ | 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 | 不依赖GPS导航 | 通信 | 5G | MIT技术评论 | 航空发动机 | 可穿戴 | 氮化镓 | 隐身 | 半导体 | 脑机接口 | 传感器 |
先进武器:中国武器 | 无人机 | 轰炸机 | 预警机 | 运输机 | 直升机 | 战斗机 | 六代机 | 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 | 反无人机 | 防空反导 | 潜航器 |
未来战争:未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空战 | 反卫星
|
领先国家:美国 | 俄罗斯 | 英国 | 德国 | 法国 | 日本 | 以色列 | 印度 |
前沿机构:战略能力办公室 | DARPA | 快响小组 | Gartner | 硅谷 | 谷歌 | 华为 | 阿里 | 俄先期研究基金会 | 军工百强 |
前沿人物:钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普 |
专家专栏:黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 易本胜 | 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨 |
全文收录:2017文章全收录 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录
|
其他主题系列陆续整理中,敬请期待……
|