上海交通大学张礼知教授课题组EST:表面硼化削弱BiOBr激子效应实现可见光催化O2选择性活化和NO高效安全去除
The following article is from Environmental Advances Author 张礼知教授团队
近日,上海交通大学张礼知教授课题组在Environmental Science & Technology上发表了题为“Surface boronizing can weaken the excitonic effects of BiOBr nanosheets for efficient O2activation and selective NO oxidation under visible light irradiation”的研究论文(DOI: 10.1021/acs.est.2c03769),探究了表面硼化对BiOBr二维层状材料激子效应和分子氧活化途径的影响,通过密度泛函理论(DFT)计算、不同温度下稳态荧光光谱、电子顺磁共振(ESR)和原位红外测试深入解析了表面硼化BiOBr(B-BiOBr)的载流子动力学、分子氧活化途径和可见光下去除室内典型污染物NO的催化氧化行为及机理。基于材料表征、载流子动力学、自由基鉴定和DFT计算,研究人员发现B-BiOBr表面硼化层的导带和价带位置相较于本体结构同时向下移动,形成了由体相到表面的交错能级,从而有效促进层间束缚态激子解离为自由载流子,实现了光生电子-空穴对的有效分离以及高效利用。研究表明具有强激子效应的BiOBr主要通过激子传能过程活化O2生成氧化能力较弱的1O2,难以实现NO高效去除,且易产生毒性更高的NO2;而B-BiOBr能够通过载流子传递过程选择性活化O2生成强氧化性O2-,能够深度氧化NO并选择性产生NO3-。
近期,张礼知课题组针对二维层状光催化材料强健的激子效应,利用氧化硼熔盐法制备了均相硼掺杂BiOCl二维光催化材料BiOCl-B-OV,发现体相B原子掺杂能够在BiOCl价带上方诱导产生一个新的掺杂能级,从而破坏层状结构中电荷均一性,降低BiOCl限域层内的激子结合能,促使束缚态激子解离为自由载流子;表面B原子掺杂能够自发地夺取表面羟基,产生毗邻的氧空位(OV),并形成“B-OV”缔合结构。该BiOCl-B-OV在可见光辐照下具有优异的光催化性能(Adv. Mater. 2021, 33, 2100143)。此外,该课题组还通过类合成气合成反应驱动的气相剥离策略制备了高范德华带隙比例、{010}晶面暴露的BiOCl纳米片(Nat. Commun. 2021, 12, 5923)。研究发现BiOCl纳米片的层状结构数目决定了其范德华带隙暴露比例,而其激子稳定性则与范德华带隙暴露比例呈反比。拥有更少层数的BiOCl纳米片可以极大程度降低材料中激子稳定性,诱导束缚态激子重新解离为自由载流子。同时,提高范德华带隙暴露比例能够有效降低BiOCl纳米片表面的氧空位形成能。高范德华带隙暴露比例BiOCl纳米片在可见光辐照下具有优异的光催化性能。然而,杂原子均相掺杂和构筑表面富范德华带隙暴露的二维光催化材料需要在苛刻的焙烧温度或还原性反应条件下才能完成。因此,发展在温和条件下有效削弱二维层状材料激子效应的策略具有重要意义。
激子与载流子传输过程比较
Scheme 1. Schematic illustration of the photocatalytic O2 activation in exciton transfer and charge carrier transfer pathways. Copyright 2022 American Chemical Society.
材料表征
Figure 1. Structure characterizations. (a) TEM image and (b) HRTEM images of B-BiOBr. The inset image shows the SAED pattern. (c-h) STEM-EDX mapping images (Bi, O, Br and B) of B-BiOBr. (i) XRD patterns of BiOBr and B-BiOBr. (j) TOF-SIMS depth profiles within B-BiOBr. (k-l) 2D mapping and 3D render overlay of B within B-BiOBr. (m) High-resolution B 1s XPS depth profiles of B-BiOBr. Copyright 2022 American Chemical Society.
能带匹配与氧空位再生
Figure 2. Band alignment and VOgeneration. (a) Calculated surface DOS of BiOBr and B-BiOBr. (b) Band structure alignments for BiOBr and B-BiOBr. Atomic-resolution HAADF-STEM images and the corresponding rainbow-colored scale images of BiOBr (c, d) and B-BiOBr (e). (f) EPR spectra of BiOBr and B-BiOBr in dark and under light irradiation. (g) Bi 4f XPS depth profiles of B-BiOBr. Copyright 2022 American Chemical Society.
载流子动力学
Figure 3. Characterization of charge carriers dynamics. (a, b) Steady-state PL spectra with a function of the reciprocal temperature of BiOBr and B-BiOBr. (c) Comparison of Eb and photocurrent density of BiOBr and B-BiOBr. (d) Room-temperature steady-state PL spectra and (e) steady-state SPV of the as-prepared BiOBr and B-BiOBr. (f) Schematic illustration of excitons dissociation and charge transfer within surface boronizied BiOBr. (Charge accumulation is labeled as the yellow isosurface, while the charge depletion is labeled as the blue one). Copyright 2022 American Chemical Society.
在表面硼化BiOBr(B-BiOBr)不连续的表面-本体界面处,束缚的激子受交错能级结构的影响快速解离为电子空穴对。在内电场作用下,电子快速注入到B-BiOBr表面硼化层的导带(CB),空穴则迁移到本体的价带处(VB)。
分子氧活化与ROS鉴定
Figure 4. Photocatalytic O2 activation and ROSs identification. EPR spectra for (a) TEMP-1O2 and (b) DMPO-O2- adducts over BiOBr and B-BiOBr in dark and visible light irradiation. (c) UV-vis absorbance for TMB oxidation over BiOBr and B-BiOBr at 380 nm with adding different scavengers. The use of scavengers is usually suited to aqueous conditions, but hereby extended to gas-phase as a rough indicator. (d) The degradation kinetic rate constant of FFA and the corresponding steady-state of 1O2. (e) Quantitative detection of O2- over BiOBr and B-BiOBr under visible light irradiation. Copyright 2022 American Chemical Society.
ROS定量结果表明,表面硼化能够有效抑制BiOBr能量传递介导的分子氧活化过程,降低1O2产生,促进载流子传递主导的O2-生成。
NO氧化性能评估
Figure 5. Photocatalytic NO oxidation under visible light irradiation. (a) Photocatalytic NO removal over BiOBr and B-BiOBr. (b) Change of the surface nitrogen species on B-BiOBr before and after washing. (c) Distribution of NO oxidation products over BiOBr and B-BiOBr.(d) O2-TPDprofiles of BiOBr and B-BiOBr. (e) In situ FTIR spectra of B-BiOBr for photocatalytic NO oxidation. (f) Free energy change against the reaction coordinate for NO oxidation on modeled BiOBr and B-BiOBr surface. (g) Long-term photocatalytic NO removal over B-BiOBr under visible light irradiation. (h) Schematic illustration of exciton-dominated and charge-carrier-involved photocatalytic NO oxidation processes. Copyright 2022 American Chemical Society.
这项工作报道了一种温和表面硼化策略削弱二维层状材料BiOBr激子效应的方法。研究发现表面硼化能够诱导BiOBr从本体到表面形成交错的能级结构,加速激子解离为自由载流子。与此同时,表面氧空位能够有效捕获电子并通过单电子传输路径活化O2产生O2-,深度氧化NO并选择性生成NO3-。该工作发展了一种温和的层状二维光催化材料激子效应调控策略,并阐明了选择性产生ROS实现污染物高效去除的重要意义。
Shi, Y. B., Yang, Z. P., Shi, L. J., Li, H.*, Liu, X. P., Zhang, X., Cheng, J. D., Liang, C., Cao, S. Y., Guo, F. R., Liu, X., Ai, Z. H. and Zhang, L. Z.* Surface boronizing can weaken excitonic effects of BiOBr nanosheets for efficient O2activation and selective NO oxidation under visible light irradiation. Environ. Sci. Technol. 2022, DOI: 10.1021/acs.est.2c03769
https://doi.org/10.1021/acs.est.2c03769
向环材有料投稿,即可在文献电子书直达群享受免费文章查重以及校对服务!
微信加群:
环材有料为广大环境材料开发研究领域的专家学者、研发人员提供信息交流分享平台,我们组建了环境材料热点领域的专业交流群,欢迎广大学者和硕博学生加入。
进群方式:添加小编为好友(微信号:19921509369),邀请入群。请备注:名字-单位-研究方向。
扫二维码添加小编微信,邀请入群,获得更多资讯