PyTorch中在反向传播前为什么要手动将梯度清零?
加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。点击文末“阅读原文”立刻申请入群~
作者:Pascal
原文:https://www.zhihu.com/question/303070254/answer/573037166
PyTorch中在反向传播前手动将梯度清零这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)
传统的训练函数,一个batch是这么训练的:
for i,(images,target) in enumerate(train_loader): # 1. input output images = images.cuda(non_blocking=True) target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True) outputs = model(images) loss = criterion(outputs,target) # 2. backward optimizer.zero_grad() # reset gradient loss.backward() optimizer.step()获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
optimizer.zero_grad() 清空过往梯度;
loss.backward() 反向传播,计算当前梯度;
optimizer.step() 根据梯度更新网络参数
简单的说就是进来一个batch的数据,计算一次梯度,更新一次网络
使用梯度累加是这么写的:
for i,(images,target) in enumerate(train_loader): # 1. input output images = images.cuda(non_blocking=True) target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True) outputs = model(images) loss = criterion(outputs,target) # 2.1 loss regularization loss = loss/accumulation_steps # 2.2 back propagation loss.backward() # 3. update parameters of net if((i+1)%accumulation_steps)==0: # optimizer the net optimizer.step() # update parameters of net optimizer.zero_grad() # reset gradient获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
loss.backward() 反向传播,计算当前梯度;
多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
梯度累加了一定次数后,先optimizer.step() 根据累计的梯度更新网络参数,然后optimizer.zero_grad() 清空过往梯度,为下一波梯度累加做准备;
总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。
一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果accumulation_steps为8,则batchsize '变相' 扩大了8倍,是我们这种乞丐实验室解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。
更新1:关于BN是否有影响,之前有人是这么说的:
As far as I know, batch norm statistics get updated on each forward pass, so no problem if you don't do .backward() every time.
BN的估算是在forward阶段就已经完成的,并不冲突,只是accumulation_steps=8和真实的batchsize放大八倍相比,效果自然是差一些,毕竟八倍Batchsize的BN估算出来的均值和方差肯定更精准一些。
更新2:根据@李韶华的分享,可以适当调低BN自己的momentum参数
bn自己有个momentum参数:x_new_running = (1 - momentum) * x_running + momentum * x_new_observed. momentum越接近0,老的running stats记得越久,所以可以得到更长序列的统计信息
我简单看了下PyTorch 1.0的源码:
https://github.com/pytorch/pytorch/blob/162ad945902e8fc9420cbd0ed432252bd7de673a/torch/nn/modules/batchnorm.py#L24,BN类里面momentum这个属性默认为0.1,可以尝试调节下。
*延伸阅读