查看原文
其他

TorchSeg:基于pytorch的语义分割算法开源了

ycszen 极市平台 2019-03-28

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流点击文末“阅读原文”立刻申请入群~


作者:ycszen

原文:https://zhuanlan.zhihu.com/p/55563637

项目地址:https://github.com/ycszen/TorchSeg#why-this-name-furnace


Hi, All

我们开源了TorchSeg,其中包括我们复现的算法:DFN, BiSeNet, PSPNet.


TorchSeg

This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch.


Highlights

  • Modular Design: easily construct a customized semantic segmentation models by combining different components.

  • Distributed Training: >60% faster than the multi-thread parallel method(nn.DataParallel), we use the multi-processing parallel method.

  • Multi-GPU training and inference: support different manners of inference.

  • Provides pre-trained models and implement different semantic segmentation models.


Prerequisites

  • PyTorch 1.0

    • pip3 install torch torchvision

  • Easydict

    • pip3 install easydict

  • Apex

  • Ninja

    • sudo apt-get install ninja-build

  • tqdm

    • pip3 install tqdm


    Model Zoo

    Supported Model

  • FCN

  • DFN

  • BiSeNet

  • PSPNet


Performance and Benchmarks

SS:Single Scale MSF:Multi-scale + Flip


PASCAL VOC 2012

80.61: this result reported in paper is further finetuned on train dataset.


Cityscapes

Non-real-time Methods

BiSeNet(ours)1: because we didn't pre-train the Xception39 model on ImageNet in PyTorch, we train this experiment from scratch. We will release the pre-trained Xception39 model in PyTorch and the corresponding experiment.


Real-time Methods


ADE


后续我们会开源更多复现的语义分割算法,欢迎大家 Star 和 Contribute~




*延伸阅读

有关语义分割的奇技淫巧有哪些?

FaceBoxes—官方开源CPU实时高精度人脸检测器

腾讯AI Lab开源最大规模多标签图像数据集,刷新行业数据集基准


每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流点击左下角“阅读原文”立刻申请入群~


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存