其他
ggpattern——ggplot2的好帮手
The following article is from 医学僧的科研日记 Author Ultraman Z
ggplot2强大的图形可视化能力使得R语言成为科研绘图的佼佼者,因此也衍生出了一系列辅助包,在ggplot2绘图的基础上进行补充、完善、美化。今天为大家带来的ggpattern就是一款十分实用、易上手且趣味性十足的辅助包,ggplot2的输出的每一种geom_几何对象都能在ggpattern里找到对应的geom_pattern进行填充,并且函数及参数对应度很高,用法很相似,除了内嵌的固定用法以外,用户还可以根据自己的喜好自定义,相当人性化,小伙伴们不要错过哦。
#安装并加载,可在cran直接获得
install.packages('ggplot2')
install.packages('ggpattern')
library(ggplot2)
library(ggpattern)
#填充样式
df <- data.frame(level = c("a", "b", "c", 'd'), outcome = c(2.3, 1.9, 3.2, 1))
ggplot(df, aes(level, outcome)) +
geom_col_pattern(
aes(pattern = level, pattern_angle = level, pattern_spacing = level),
fill = 'white',
colour = 'black',
pattern_density = 0.35,
pattern_fill = 'black',
pattern_colour = 'black'
) +
theme_bw() +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = 'geometry-based patterns'
) +
scale_pattern_spacing_discrete(range = c(0.01, 0.05)) +
theme(legend.position = 'none') +
coord_fixed(ratio = 1)
#调整颜色
ggplot(df, aes(level, outcome)) +
geom_col_pattern(
aes(pattern = level, fill = level, pattern_fill = level),
colour = 'black',
pattern_density = 0.35,
pattern_key_scale_factor = 1.3) +
theme_bw() +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = 'geometry-based patterns'
) +
scale_pattern_fill_manual(values = c(a='blue', b='red', c='yellow', d='darkgreen')) +
theme(legend.position = 'none') +
coord_fixed(ratio = 1)
接下来展示一下常用图形的填充方法。
#geom_bar_pattern()
ggplot(mpg, aes(class)) +
geom_bar_pattern(
aes(
pattern = class,
pattern_angle = class
),
fill = 'white',
colour = 'black',
pattern_spacing = 0.025
) +
theme_bw(18) +
labs(title = "ggpattern::geom_bar_pattern()") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/15) +
scale_pattern_discrete(guide = guide_legend(nrow = 1))
#pie graph
df <- data.frame(
group = factor(c("Cool", "But", "Use", "Less"), levels = c("Cool", "But", "Use", "Less")),
value = c(10, 20, 30, 40)
)
ggplot(df, aes(x="", y = value, pattern = group, pattern_angle = group))+
geom_bar_pattern(
width = 1,
stat = "identity",
fill = 'white',
colour = 'black',
pattern_aspect_ratio = 1,
pattern_density = 0.3
) +
coord_polar("y", start=0) +
theme_void(20) +
theme(
legend.key.size = unit(2, 'cm')
) +
labs(title = "ggpattern::geom_bar_pattern() + coord_polar()")
#geom_bin2d_pattern()
ggplot(diamonds, aes(x, y)) +
xlim(4, 10) + ylim(4, 10) +
geom_bin2d_pattern(aes(pattern_spacing = ..density..), fill = 'white', bins = 6, colour = 'black', size = 1) +
theme_bw(18) +
theme(legend.position = 'none') +
labs(title = "ggpattern::geom_bin2d_pattern()")
#geom_boxplot_pattern()
ggplot(mpg, aes(class, hwy)) +
geom_boxplot_pattern(
aes(
pattern = class,
pattern_fill = class
),
pattern_spacing = 0.03
) +
theme_bw(18) +
labs(title = "ggpattern::geom_boxplot_pattern()") +
theme(legend.position = 'none') +
coord_fixed(1/8)
#geom_col_pattern()
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
ggplot(df, aes(trt, outcome)) +
geom_col_pattern(
aes(
pattern = trt,
fill = trt
),
colour = 'black',
pattern_density = 0.5,
pattern_key_scale_factor = 1.11
) +
theme_bw(18) +
labs(title = "ggpattern::geom_col_pattern()") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/2)
#geom_crossbar_pattern()
df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)
)
ggplot(df, aes(trt, resp, colour = group)) +
geom_crossbar_pattern(
aes(
ymin = lower,
ymax = upper,
pattern_angle = trt,
pattern = group
), width = 0.2,
pattern_spacing = 0.02
) +
theme_bw(18) +
labs(title = "ggpattern::geom_crossbar_pattern()") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/3)
#geom_density_pattern()
ggplot(mtcars) +
geom_density_pattern(
aes(
x = mpg,
pattern_fill = as.factor(cyl),
pattern = as.factor(cyl)
),
fill = 'white',
pattern_key_scale_factor = 1.2,
pattern_density = 0.4
) +
theme_bw(18) +
labs(title = "ggpattern::geom_density_pattern()") +
theme(legend.key.size = unit(2, 'cm')) +
coord_fixed(ratio = 100)
.
#geom_map_pattern()
crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)
states_map <- map_data("state")
ggplot(crimes, aes(map_id = state)) +
geom_map_pattern(
aes(
# fill = Murder,
pattern_fill = Murder,
pattern_spacing = state,
pattern_density = state,
pattern_angle = state,
pattern = state
),
fill = 'white',
colour = 'black',
pattern_aspect_ratio = 1.8,
map = states_map
) +
expand_limits(x = states_map$long, y = states_map$lat) +
coord_map() +
theme_bw(18) +
labs(title = "ggpattern::geom_map_pattern()") +
scale_pattern_density_discrete(range = c(0.01, 0.3)) +
scale_pattern_spacing_discrete(range = c(0.01, 0.03)) +
theme(legend.position = 'none')
#geom_polygon_pattern()
angle <- seq(0, 2*pi, length.out = 7) + pi/6
polygon_df <- data.frame(
angle = angle,
x = cos(angle),
y = sin(angle)
)
ggplot(polygon_df) +
geom_polygon_pattern(
aes(x = x, y = y),
fill = 'white',
colour = 'black',
pattern_spacing = 0.15,
pattern_density = 0.4,
pattern_fill = 'lightblue',
pattern_colour = '#002366',
pattern_angle = 45
) +
labs(title = "ggpattern") +
coord_equal() +
theme_bw(25) +
theme(axis.title = element_blank())
#geom_rect_pattern()
plot_df <- data.frame(
xmin = c(0, 10),
xmax = c(8, 18),
ymin = c(0, 10),
ymax = c(5, 19),
type = c('a', 'b'),
angle = c(45, 0),
pname = c('circle', 'circle'),
pcolour = c('red', 'blue'),
pspace = c(0.03, 0.05),
size = c(0.5, 1),
stringsAsFactors = FALSE
)
ggplot(plot_df) +
geom_rect_pattern(
aes(
xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax,
pattern_angle = I(angle),
pattern_colour = I(pcolour),
pattern_spacing = I(pspace),
pattern_size = I(size)
),
pattern = 'circle',
fill = 'white',
colour = 'black',
pattern_density = 0.3
) +
theme_bw(18) +
labs(title = "ggpattern::geom_rect_pattern()") +
theme(legend.key.size = unit(1.5, 'cm'))
#geom_ribbon_pattern()
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
ggplot(huron, aes(year)) +
geom_ribbon_pattern(
aes(
ymin = level - 1,
ymax = level + 1
),
fill = NA,
colour = 'black',
pattern = 'circle',
pattern_spacing = 0.03,
pattern_density = 0.5,
pattern_angle = 30,
outline.type = 'legacy'
) +
theme_bw(18) +
labs(title = "ggpattern::geom_ribbon_pattern()")
#geom_sf_pattern()
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
nc <- nc %>% filter(between(CNTY_ID, 1820, 1830))
ggplot(nc) +
geom_sf_pattern(
aes(
pattern = NAME,
fill = NAME
),
pattern_aspect_ratio = 2.8
) +
theme_bw(15) +
theme(legend.key.size = unit(1.5, 'cm')) +
labs(title = "ggpattern::geom_sf_pattern()")
#geom_tile_pattern()
df <- data.frame(
x = rep(c(2, 5, 7, 9, 12), 2),
y = rep(c(1, 2), each = 5),
z = factor(rep(1:5, each = 2)),
w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)
)
ggplot(df, aes(x, y)) +
geom_tile_pattern(
aes(
fill = z,
pattern = z
),
colour = "grey50"
) +
theme_bw(18) +
labs(title = "ggpattern::geom_tile_pattern()") +
theme(
legend.position = 'bottom',
legend.key.size = unit(1.5, 'cm')
) +
coord_fixed(ratio = 4)
#geom_violin_pattern()
ggplot(mtcars, aes(as.factor(cyl), mpg)) +
geom_violin_pattern(aes(pattern = as.factor(cyl))) +
theme_bw(18) +
labs(title = "ggpattern::geom_violin_pattern()") +
theme(
legend.key.size = unit(2, 'cm')
) +
coord_fixed(1/15)
----------------------------分界线----------------------------------
前几期我们的Small Dragon小伙伴分享了一个绘制动态图的包gganimate,本篇推文也接近尾声了,再给大家展示一下ggpattern和gganimate的结合,让你的个性化填充动起来!
library(ggpattern)
library(gganimate)
df1 <- data.frame(time = 1, offset = 0 , trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2), stringsAsFactors = FALSE)
df2 <- data.frame(time = 2, offset = 0.045, trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2), stringsAsFactors = FALSE)
df <- rbind(df1, df2)
p <- ggplot(df, aes(trt, outcome)) +
geom_col_pattern(
aes(
pattern_fill = trt,
pattern_xoffset = I(offset),
pattern_yoffset = I(-offset)
),
colour = 'black',
fill = 'white',
pattern_density = 0.5,
pattern_angle = 45
) +
theme_bw() +
labs(title = "ggpattern + gganimate") +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/2)
p <- p + transition_states(time, transition_length = 2,
state_length = 0, wrap = FALSE)
除此之外,还有很多实用和有趣的函数与功能没有展示出来,小伙伴们感兴趣的话可以阅读原文献并且自己研究一下,会很受裨益。
往期精品(点击图片直达文字对应教程)
后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集