查看原文
其他

ggpattern——ggplot2的好帮手

生信宝典 2022-09-23

The following article is from 医学僧的科研日记 Author Ultraman Z


ggplot2强大的图形可视化能力使得R语言成为科研绘图的佼佼者,因此也衍生出了一系列辅助包,在ggplot2绘图的基础上进行补充、完善、美化。今天为大家带来的ggpattern就是一款十分实用、易上手且趣味性十足的辅助包,ggplot2的输出的每一种geom_几何对象都能在ggpattern里找到对应的geom_pattern进行填充,并且函数及参数对应度很高,用法很相似,除了内嵌的固定用法以外,用户还可以根据自己的喜好自定义,相当人性化,小伙伴们不要错过哦。


#安装并加载,可在cran直接获得install.packages('ggplot2')install.packages('ggpattern') library(ggplot2)library(ggpattern)
#填充样式df <- data.frame(level = c("a", "b", "c", 'd'), outcome = c(2.3, 1.9, 3.2, 1))ggplot(df, aes(level, outcome)) + geom_col_pattern( aes(pattern = level, pattern_angle = level, pattern_spacing = level), fill = 'white', colour = 'black', pattern_density = 0.35, pattern_fill = 'black', pattern_colour = 'black' ) + theme_bw() + labs( title = "ggpattern::geom_col_pattern()", subtitle = 'geometry-based patterns' ) + scale_pattern_spacing_discrete(range = c(0.01, 0.05)) + theme(legend.position = 'none') + coord_fixed(ratio = 1)

#调整颜色ggplot(df, aes(level, outcome)) + geom_col_pattern( aes(pattern = level, fill = level, pattern_fill = level), colour = 'black', pattern_density = 0.35, pattern_key_scale_factor = 1.3) + theme_bw() + labs( title = "ggpattern::geom_col_pattern()", subtitle = 'geometry-based patterns' ) + scale_pattern_fill_manual(values = c(a='blue', b='red', c='yellow', d='darkgreen')) + theme(legend.position = 'none') + coord_fixed(ratio = 1)

接下来展示一下常用图形的填充方法。


#geom_bar_pattern()ggplot(mpg, aes(class)) + geom_bar_pattern( aes( pattern = class, pattern_angle = class ), fill = 'white', colour = 'black', pattern_spacing = 0.025 ) + theme_bw(18) + labs(title = "ggpattern::geom_bar_pattern()") + theme(legend.position = 'none') + coord_fixed(ratio = 1/15) + scale_pattern_discrete(guide = guide_legend(nrow = 1))

#pie graphdf <- data.frame( group = factor(c("Cool", "But", "Use", "Less"), levels = c("Cool", "But", "Use", "Less")), value = c(10, 20, 30, 40))ggplot(df, aes(x="", y = value, pattern = group, pattern_angle = group))+ geom_bar_pattern( width = 1, stat = "identity", fill = 'white', colour = 'black', pattern_aspect_ratio = 1, pattern_density = 0.3 ) + coord_polar("y", start=0) + theme_void(20) + theme( legend.key.size = unit(2, 'cm') ) + labs(title = "ggpattern::geom_bar_pattern() + coord_polar()")


#geom_bin2d_pattern()ggplot(diamonds, aes(x, y)) + xlim(4, 10) + ylim(4, 10) + geom_bin2d_pattern(aes(pattern_spacing = ..density..), fill = 'white', bins = 6, colour = 'black', size = 1) + theme_bw(18) + theme(legend.position = 'none') + labs(title = "ggpattern::geom_bin2d_pattern()")

#geom_boxplot_pattern()ggplot(mpg, aes(class, hwy)) + geom_boxplot_pattern( aes( pattern = class, pattern_fill = class ), pattern_spacing = 0.03 ) + theme_bw(18) + labs(title = "ggpattern::geom_boxplot_pattern()") + theme(legend.position = 'none') + coord_fixed(1/8)

#geom_col_pattern()df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))ggplot(df, aes(trt, outcome)) + geom_col_pattern( aes( pattern = trt, fill = trt ), colour = 'black', pattern_density = 0.5, pattern_key_scale_factor = 1.11 ) + theme_bw(18) + labs(title = "ggpattern::geom_col_pattern()") + theme(legend.position = 'none') + coord_fixed(ratio = 1/2)

#geom_crossbar_pattern()df <- data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6))ggplot(df, aes(trt, resp, colour = group)) + geom_crossbar_pattern( aes( ymin = lower, ymax = upper, pattern_angle = trt, pattern = group ), width = 0.2, pattern_spacing = 0.02 ) + theme_bw(18) + labs(title = "ggpattern::geom_crossbar_pattern()") + theme(legend.position = 'none') + coord_fixed(ratio = 1/3)

#geom_density_pattern()ggplot(mtcars) + geom_density_pattern( aes( x = mpg, pattern_fill = as.factor(cyl), pattern = as.factor(cyl) ), fill = 'white', pattern_key_scale_factor = 1.2, pattern_density = 0.4 ) + theme_bw(18) + labs(title = "ggpattern::geom_density_pattern()") + theme(legend.key.size = unit(2, 'cm')) + coord_fixed(ratio = 100)

.

#geom_map_pattern()crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)states_map <- map_data("state")ggplot(crimes, aes(map_id = state)) + geom_map_pattern( aes( # fill = Murder, pattern_fill = Murder, pattern_spacing = state, pattern_density = state, pattern_angle = state, pattern = state ), fill = 'white', colour = 'black', pattern_aspect_ratio = 1.8, map = states_map ) + expand_limits(x = states_map$long, y = states_map$lat) + coord_map() + theme_bw(18) + labs(title = "ggpattern::geom_map_pattern()") + scale_pattern_density_discrete(range = c(0.01, 0.3)) + scale_pattern_spacing_discrete(range = c(0.01, 0.03)) + theme(legend.position = 'none')

#geom_polygon_pattern()angle <- seq(0, 2*pi, length.out = 7) + pi/6polygon_df <- data.frame( angle = angle, x = cos(angle), y = sin(angle))ggplot(polygon_df) + geom_polygon_pattern( aes(x = x, y = y), fill = 'white', colour = 'black', pattern_spacing = 0.15, pattern_density = 0.4, pattern_fill = 'lightblue', pattern_colour = '#002366', pattern_angle = 45 ) + labs(title = "ggpattern") + coord_equal() + theme_bw(25) + theme(axis.title = element_blank())

#geom_rect_pattern()plot_df <- data.frame( xmin = c(0, 10), xmax = c(8, 18), ymin = c(0, 10), ymax = c(5, 19), type = c('a', 'b'), angle = c(45, 0), pname = c('circle', 'circle'), pcolour = c('red', 'blue'), pspace = c(0.03, 0.05), size = c(0.5, 1), stringsAsFactors = FALSE)ggplot(plot_df) + geom_rect_pattern( aes( xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax, pattern_angle = I(angle), pattern_colour = I(pcolour), pattern_spacing = I(pspace), pattern_size = I(size) ), pattern = 'circle', fill = 'white', colour = 'black', pattern_density = 0.3 ) + theme_bw(18) + labs(title = "ggpattern::geom_rect_pattern()") + theme(legend.key.size = unit(1.5, 'cm'))

#geom_ribbon_pattern()huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))ggplot(huron, aes(year)) + geom_ribbon_pattern( aes( ymin = level - 1, ymax = level + 1 ), fill = NA, colour = 'black', pattern = 'circle', pattern_spacing = 0.03, pattern_density = 0.5, pattern_angle = 30, outline.type = 'legacy' ) + theme_bw(18) + labs(title = "ggpattern::geom_ribbon_pattern()")

#geom_sf_pattern()nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)nc <- nc %>% filter(between(CNTY_ID, 1820, 1830))ggplot(nc) + geom_sf_pattern( aes( pattern = NAME, fill = NAME ), pattern_aspect_ratio = 2.8 ) + theme_bw(15) + theme(legend.key.size = unit(1.5, 'cm')) + labs(title = "ggpattern::geom_sf_pattern()")

#geom_tile_pattern()df <- data.frame( x = rep(c(2, 5, 7, 9, 12), 2), y = rep(c(1, 2), each = 5), z = factor(rep(1:5, each = 2)), w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2))ggplot(df, aes(x, y)) + geom_tile_pattern( aes( fill = z, pattern = z ), colour = "grey50" ) + theme_bw(18) + labs(title = "ggpattern::geom_tile_pattern()") + theme( legend.position = 'bottom', legend.key.size = unit(1.5, 'cm') ) + coord_fixed(ratio = 4)

#geom_violin_pattern()ggplot(mtcars, aes(as.factor(cyl), mpg)) + geom_violin_pattern(aes(pattern = as.factor(cyl))) + theme_bw(18) + labs(title = "ggpattern::geom_violin_pattern()") + theme( legend.key.size = unit(2, 'cm') ) + coord_fixed(1/15)


----------------------------分界线----------------------------------

前几期我们的Small Dragon小伙伴分享了一个绘制动态图的包gganimate,本篇推文也接近尾声了,再给大家展示一下ggpattern和gganimate的结合,让你的个性化填充动起来!


library(ggpattern)library(gganimate)df1 <- data.frame(time = 1, offset = 0 , trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2), stringsAsFactors = FALSE)df2 <- data.frame(time = 2, offset = 0.045, trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2), stringsAsFactors = FALSE)df <- rbind(df1, df2)p <- ggplot(df, aes(trt, outcome)) + geom_col_pattern( aes( pattern_fill = trt, pattern_xoffset = I(offset), pattern_yoffset = I(-offset) ), colour = 'black', fill = 'white', pattern_density = 0.5, pattern_angle = 45 ) + theme_bw() + labs(title = "ggpattern + gganimate") + theme(legend.position = 'none') + coord_fixed(ratio = 1/2) p <- p + transition_states(time, transition_length = 2, state_length = 0, wrap = FALSE)

除此之外,还有很多实用和有趣的函数与功能没有展示出来,小伙伴们感兴趣的话可以阅读原文献并且自己研究一下,会很受裨益。

往期精品(点击图片直达文字对应教程)

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存