查看原文
其他

在Python-dataframe中如何把出生日期转化为年龄?

博观厚积 Python爱好者社区 2019-04-07

作者:博观厚积

简书专栏:https://www.jianshu.com/u/2f376f777ef1


我们在做数据挖掘项目或大数据竞赛时,如果个体是人的时候,获得的数据中可能有出生日期的Series,举个简单例子,比如这样的一些数:

# -*- coding: utf-8 -*- import pandas as pd import numpy as np from pandas import Series, DataFrame import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline data = {'birth': ['10/8/00', '7/21/93', '6/14/01', '5/18/99', '1/5/98']} frame = DataFrame(data) frame


从数据来看,'10/8/00'之类的数,最左边的数表示月份,中间的数表示日,最后的数表示年度。


实际上我们在分析时并不需要人的出生日期,而是需要年龄,不同的年龄阶段会有不同的状态,比如收入、健康、居住条件等等,且能够很好地把不同样本的差异性进行大范围的划分,而不是像出生日期那样包含信息量过大且在算法训练时不好作为有效数据进行训练,age是一个很好地特征工程指示变量。


那如何把上述birth数据变为年龄age呢?


在这里用到datetime这个库,如下:


(1)首先把birth转化为标准时间格式

frame['birth'] = pd.to_datetime(frame['birth']) frame


(2)获取当前时间的年份,并减去birth的年份

import datetime as dt now_year =dt.datetime.today().year  #当前的年份 frame['age']=now_year-frame.birth.dt.year frame

在这里使用了dt.datetime.today().year来获取当前日期的年份,然后将birth数据中的年份数据提取出来(frame.birth.dt.year),两者相减就得到需要的年龄数据,如下:



有时候我们可能还会关注到人的出生月份与要预测变量的关系,比如人的星座就是很流行的一种以出生月份、日份来评估其对人的影响,也可以按这种方法去提取月、日数据。

Python爱好者社区历史文章大合集

Python爱好者社区历史文章列表(每周append更新一次)

福利:文末扫码立刻关注公众号,“Python爱好者社区”,开始学习Python课程:

关注后在公众号内回复“课程”即可获取:

小编的Python入门免费视频课程!!!

【最新免费微课】小编的Python快速上手matplotlib可视化库!!!

崔老师爬虫实战案例免费学习视频。

陈老师数据分析报告制作免费学习视频。

玩转大数据分析!Spark2.X+Python 精华实战课程免费学习视频。


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存