查看原文
其他

FESE专刊 | “人工智能/机器学习在环境科学与工程中的应用” 开放投稿

Jiao Zhang 环境前沿 2022-12-09


机器学习是人工智能(AI)的一个分支,通过计算机算法利用经验和数据实现自动学习和改进。机器学习算法能够以强大的拟合能力管理复杂的多维数据集,在环境科学和工程领域受到越来越多的关注。在过去几十年中,在传统数据分析方法面临局限和挑战的领域,大数据分析(包括机器学习)成为不可或缺的发展方向。可以预见,人工智能(包括机器学习)将在实现碳中和与可持续发展目标方面发挥重要作用。FESE“人工智能/机器学习”专刊将展示机器学习在环境科学与工程领域的最新研究进展,呈现领域前沿数据分析和建模的变革以及应用相关的关键方面。


Machine learning is a subfield of artificial intelligence (AI), which is the study of computer algorithms that can automatically learn and improve through experience and by the use of data. Machine learning algorithms can manage complex, multidimensional datasets with the powerful fitting ability and have obtained increasing attention in the community of environmental science and engineering. The development of big data analysis approaches, including machine learning, has been indispensable in the area where traditional data analysis methods face limitations or challenges over the past decades. It could foresee that AI, including machine learning, will play a significant role in achieving carbon neutrality and the sustainable development goals. This special issue will address the latest research progress of machine learning to revolutionize data analysis and modeling in the frontiers of the environmental science and engineering, and cover the critical aspects needed for such applications.


客座编辑/Guest Editors

Dr. Yongsheng Chen


Georgia Institute of Technology, USA


Dr. Xiaonan Wang

 Tsinghua University, China


Dr. Joe F. Bozeman

Georgia Institute of Technology, USA



Dr. Shouliang Yi


U.S. Department of Energy, National Energy Technology Laboratory, USA


收稿范围/Topics

本专刊接受多种文章体裁投稿,包括综述、前沿研究、展望等。

The special issue welcomes all types of content, including reviews, cutting-edge research, and perspectives.


研究主题包括但不限于:

1.  数据驱动的机器学习途径应用于废物转化为能源、城市固体废物处理、土壤和水体中重金属的模拟和去除2.  人工智能系统用于精确预测结构-性能关系和发现新材料3.  机器学习用于预测基于溶剂、吸附和膜的碳捕获、利用和储存4.  通过机器学习优化的新型溶剂、吸附剂和膜设计5.  用于空气质量预测、土壤湿度预测、水资源可用性预测的机器学习工具6.  机器学习用于水质预测


Typical topics may include, but not limited to,Topic 1: Application of Data-driven Machine Learning Approaches for Waste-to-energy Conversion, Municipal Solid-Waste Treatment, and the Simulation of Heavy Metals in Contaminated Soil, Water Bodies and Removal from Aqueous SolutionsTopic 2: Artificial Intelligence System for the Precise Prediction of Structure-Property Relationship and Discovering New MaterialsTopic 3: Machine Learning for Prediction of Solvent-, Adsorption-, Membrane-based Carbon Capture, Utilization and StorageTopic 4: Novel Solvent, Sorbent, and Membrane Design Using Machine Learning-enabled Optimization.Topic 5: Machine Learning-based Tools for the Air Quality Prediction, Soil Moisture Prediction, and the Prediction of Water Resource Availability.Topic 6: Water Quality Prediction Using Machine Learning Methods.


时间节点/Time windows

开放投稿:2022年3月1日投稿截止:2022年12月31日


考虑到本领域研究的耗时,如需更多准备时间,请及时联系Dr. Zhang。

Considering the time-consuming situation of the research in this field, please feel free to send an email to Dr. Zhang (jiaozhang@tsinghua.edu.cn) if you need more time before your submission.


FESE采用连续出版模式,被接收的文章将在第一时间网络发表。

After a positive review and peer reviewers’ approval, the accepted articles will be published immediately in the online Special Issue of FESE that builds up until the expected publication.


稿件提交/Submission

请在FESE投审稿系统(https://mc.manuscriptcentral.com/fese)中投稿,并选择稿件类型为“Special issue: Machine Learning”。

The papers for this special issue can be submitted to FESE via:

https://mc.manuscriptcentral.com/fese

Please select the type of manuscript: “Special issue: Machine Learning” in the list of ongoing special issues.



期刊介绍


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存