上海市测绘院:MAXAR 30cm HD立体影像在超大型城市1:2000地形图测绘中的应用——以上海国际旅游度假区为例
上海市测绘院 李春霖、杨燕、李乃一、李宏宇、许淑淑
1
引言
2
研究区概述及卫星影像数据
2.1 研究区概述
上海市位于我国南北海岸线的中部,北纬31°14′,东经121°29′,地处长江三角洲前缘,东濒东海,南临杭州湾,西接江苏、浙江两省,北接长江入海口。全境为冲积平原,仅西南部有部分火山岩丘。海拔平均高度在4米左右,地势平坦,山脉少而低小,属亚热带湿润季风气候,为典型的海洋性气候。气候温和湿润,四季分明,日照充分,雨水充沛,无霜期长。
图1 研究区地理位置
本次研究以上海国际旅游度假区为试验区(图 1)。上海国际旅游度假区位于浦东新区中部的川沙新镇,规划面积约24.7平方千米,将打造集主题游乐、文化创意、商业零售、体育休闲等为主导产业的现代服务业集聚区。核心区约7平方千米,包括上海迪士尼乐园、上海迪士尼乐园酒店、购物村等。
2.2 卫星影像数据情况
WorldView系列卫星是MAXAR公司的商业成像卫星系统,其光学卫星群包括在轨卫星WorldView-1、GeoEye-1、WorldView-2和WorldView-3,以及已经退役的IKNOS、QUICKBIRD和WorldView-4。其中,WorldView-2于2009年10月8日发射,是DigitalGlobe的第三颗在轨卫星,可提供分辨率为0.46米的全色影像和1.84米分辨率的八波段立体多光谱图像,也是第一个高分辨率的8波段多光谱商业卫星。卫星的重访周期为1.1天。其8个光谱波段设置如图 2所示。
图2 WorldView-2波段设置
得益于MAXAR独特的HD技术,可以智能地增加像素数以提供独特的30cm像素产品。整体上可以通过减少像素化来提高图像的视觉清晰度,使影像美观精致,边缘精确,细节重现细腻。影像高度清晰,精度高,无控定位精度可达2.3m,30cm HD的立体影像数据产品可实现1:2000制图。本项目中,项目组采用的数据便是经过HD技术处理后生成的0.3m分辨率的WorldView-2 多光谱卫星影像,并带有RPB参数文档。立体像对的获取时间为2016年11月18日,即开园后5个月,数据级别为2A,影像质量良好,云量小于5%,整体反差明显。
图3 多光谱数据预览
3
影像处理和控制资料的选取
3.1 试验区已有控制资料
3.1.1 已有控制资料
3.1.2 控制资料选取
3.2 影像处理
图4 技术流程图
3.2.1 影像预处理
影像预处理主要是对影像的质量进行初步检查,主要看影像上是否存在云、反光和影像缺失等问题,以及影像之间的重叠度是否满足空三要求。
3.2.2 影像正射校正
上海地区地势平坦,为平缓的冲积平原,海拔平均高度在4米左右,可以采用平均高程代替DEM对卫星影像进行区域网平差以获得正射校正影像图,随后再利用控制点数据对整景数据进行整体几何校正。
卫星影像的区域网平差技术通过影像自身之间的约束关系补偿有理函数模型的系统误差以提高立体定位精度。通过模拟卫星飞行的姿态来还原地物的真实位置,这就是基于有理函数模型的区域网平差。区域网平差的精度直接决定了后续测绘生产产品的精度。这种做法可以保证不同景卫星的接边精度,尤其对大批量的卫星影像数据的生产有效率上的提升。
(1)全色影像正射校正
全色影像正射纠正的基本处理步骤见图 5。首先在在PCI的OrthoEngine模块下新建工程,设置参考坐标系、输出投影、影像分辨率等信息;打开需要处理的原始全色卫星影像,在相邻的影像之间进行连接点自动提取;选择参考影像,进行控制点自动匹配;进行平差,剔除误差较大的控制点与连接点,控制点尽量在1以内。输出全色正射影像。将输出结果与参考影像套合检查。如果相差较大,需要手动刺点纠正。
图5 全色影像正射校正作业流程
多光谱影像与全色影像的配准是以全色波段影像为基准,选取同名点对多光谱影像进行配准。同名点不少于50个,且分布均匀;配准的控制点残差在1个像素以内。配准后进行多光谱影像和全色波段影像的配准检查,两景影像之间的配准精度不大于1个像素(多光谱影像),多光谱影像配准后的影像分辨率和原始影像地面分辨率保持一致。
3.2.3 影像融合
将全色影像和多光谱影像进行融合,既保留了多光谱数据的光谱信息,又保留了全色数据高分辨率的特性,方便后续的处理。利用Pansharp算法处理的影像色彩保持较好,接近自然色,同时可以去除所有融合波段的差异问题,使之可以自动融合。在PCI软件中,采用Pansharp2模型进行融合,融合过程采用Modeler模块建立融合模型,设置输入输出参数,即可自动运行。
图6 Pansharp2融合模型
图7 融合后影像
3.2.4 卫星影像空三
图8 卫星影像空三平差技术路线
图9 试验区控制点分布图
3.2.5 DLG立体采集
根据测区的实际地面情况,选择有代表性的区域,按照1:2000地形图测绘要求,采集建筑、道路、电杆等主要地形地物。利用WorldView-2影像进行立体测图,0.3m的分辨率对作业员要求相对较高。图 10为试验区1:2000地形图的部分区域展示,分别代表了综合地物、房屋建筑、绿化和水域的地形图表示。
图10 地形图展示
3.2.6 精度检验
4
精度检测方法
4.1 地理精度检查
4.2 数学精度检查
4.3 检查点选取
4.3.1 选取原则
4.3.2 检查点分布
图11 检查点分布图
5
精度结果
5.1 地面控制点精度
5.2 图根点精度
由于控制点数量有限,不能达到检查点的个数要求,因此,我们以已有地形数据的图根点的点平面位置和高程信息为基础,进行精度统计,结果如表2所示。
6
精度结论
6.1 地理精度结论
依据《DG/TJ08-86-2010 1:500、1:1000、1:2000数字地形测量规范》,1:2000地形图需完整表达地面大于20cm以上的地物。本实验采用的分辨率为0.3m的卫星影像,基本地物表达清晰,能够表达地面建筑,道路及其大型附属设施、桥梁、河流、行道树、农田等基本地物,通过立体相对,可以表达其地面起伏变化,绘制相应的等高线。通过卫星影像绘制的地形图能够满足大部分地物地理要素的正确性及数据完整性、各要素、注记和符号的正确性、地理要素的协调性、综合取舍的合理性。
6.2 数学精度结论
本实验区域地形为平地,依据《GB/T 7930—2008 1:500 1:1000 1:2000地形图航空摄影测量内业规范》,1:2000地形图等高距为1.0米,地物点平面中误差为0.6mm(换算为实际距离为1.2m),高程中误差为0.4m。
6.2.1 平面精度
(1)地面控制点精度
43个平面点对应的点位中误差计算结果为0.94m,按平地规定的图上 0.6 mm 换算为实际距离为1.2m,说明该精度符合GB/T7930—2008测图规范。严格按照两倍中误差统计,43个点中,有1个点的平面精度小于两倍中误差2.4m,有1个点(精度表标红处)为粗差,粗差率为2.32%。
(2)图根点精度
264个平面点对应的点位中误差计算结果为0.99m,按平地规定的图上 0.6 mm 换算为实际距离为1.2m,说明该精度符合GB/T7930—2008测图规范。严格按照两倍中误差统计,264个点中,有261个点的平面精度小于两倍中误差2.4m,有3个点(精度表标红处)为粗差,粗差率为1.1%。
经粗差点统计发现,有粗差的检查点均取自建筑地面角点。
6.2.2 高程精度
(1)地面控制点精度
43个高程注记点的高程中误差计算结果为0.39m,试验区地形为平地,0.39 m 的高程中误差计算结果小于GB/T7930—2008规定的平地高程注记点的中误差( 0.4 m) 。严格按照 0.8 m 的两倍中误差来统计,43个高程注记点均满足精度要求。
(2)图根点精度
264个高程注记点的高程中误差计算结果为0.39m,试验区地形为平地,0.39 m 的高程中误差计算结果小于GB/T7930—2008规定的平地高程注记点的中误差( 0.4 m) 。严格按照 0.8 m 的两倍中误差来统计,264个高程注记点中有 1个(精度表标红处)粗差,粗差率为0.38% 。
依据平面和高程精度分析结果来看,利用WorldView-230cm HD卫星影像进行1:2000地形图测制的技术路线是可行的,成图结果符合国家标准的精度要求。
6.3 存在问题
(1)地物轮廓表达受干扰
地物边线如路边线、河流边线等易受沿线两侧植被投影的影响,不能准确表达地物实际边线。下图以水域边界为例:
图12 河流边界提取
7
行业价值
8
其他
同时也需注意到利用卫星影像进行大比例尺制图的不足之处,实际操作中发现仅凭影像图的目视解译判读地物并不能完全判读所有地物,需要结合其他资料才能确定地物类型与其属性,所以地形图更新测绘中需要结合实地踏勘、航空、无人机倾斜摄影等资料的补充。
推荐阅读
推荐关注
温馨提示:近期,微信公众号信息流改版。每个用户可以设置 常读订阅号,这些订阅号将以大卡片的形式展示。因此,如果不想错过“测绘之家”的文章,你一定要进行以下操作:进入“测绘之家”公众号 → 点击右上角的 ··· 菜单 → 选择「设为星标」
点分享
点点赞
点在看
↓↓↓点击下方“阅读原文”查看更多精彩内容...