国庆节,做什么?学计量,改命运:陈强老师的高级计量及Stata现场班,Last Call
如果说“知识改变命运”,这就是一次绝好的机会。士别五日,或当刮目相看!
在此五天现场班中(2021年10月1日-5日),陈强老师将把其经典教材《高级计量经济学及Stata应用》(2014年,第2版)的精髓要诀,毫无保留地用最通俗而生动的语言悉数奉上;以及书中所没有的近年来计量经济学的最新前沿进展(详见下文的授课大纲)。
如果想知道陈强老师的高级计量现场班究竟是怎么回事,不妨让我们来回顾今年五一节上一期现场班的精彩细节吧……
无论你是20+, 30+, 40+, 还是50+, 保持年轻的一种重要方法就是不断地挑战自我,学习新知识,包括学习新的计量知识。
-- 陈强老师于2021年五四青年节
2021年5月1日,碧空如洗,春风如浴,近150名学子齐聚北京,慕名参加山东大学陈强教授的高级计量经济学及Stata现场班。这些学员来自全国不同高校与科研机构,专业分布则遍及经管、社科、医药卫生等各学科。整整五天,学员们如饥似渴地聆听陈强教授分享高级计量经济学的精髓与前沿,然后满载而归。
图1. 近150位参班学员认真听课
5月1日上午,陈强教授开场即感慨,“每次开始讲计量课之前,我都很激动。感觉各位非常幸运,虽然失去了五一节的假期,不能游山玩水,但获得的却是计量与Stata的知识盛宴。希望大家都能心无旁骛,闭关学习,获得质的飞跃”。陈老师随后将计量经济学的精髓知识,由浅入深,如数家珍,娓娓道来,丝丝入扣,环环相连,再结合Stata实战与经典案例,不时让学员们豁然开朗,感受顿悟的喜悦。
图2. 授课ing
不妨先来看看,此次“高级计量经济学及Stata”现场班的内容简介与课程大纲:
在原有现场班班精彩内容基础上(含合成控制法、断点回归、拐点回归等等),本次五天高级现场班又增加了不少全新的前沿内容,包括交互固定效应、回归控制法、控制函数法、局部平均处理效应、异质性双向固定效应、粗糙化精确匹配等。5月1日-5日,直指人心,登堂入室,运用之妙,存乎一心。士别五日,或当刮目相待,Now or Never!
课纲概览
第一讲,OLS理论
着重介绍小样本与大样本OLS,以及相应的普通标准误、异方差稳健标准误、异方差自相关稳健标准误、聚类稳健标准误、自助标准误(bootstrap standard errors)。深切理解OLS的原理与适用条件,是一切计量原理的基础。
第二讲,OLS应用
OLS的拓展主题:虚拟变量、交互项、机制(mechanism)检验,核心变量与控制变量的区别(控制变量的内生性),广义最小二乘法(GLS)。
案例:改革开放的结构变动;红薯与旱灾的交互项;校外学习机会的代理变量。
第三讲,Stata快速入门
及时地介绍Stata知识,以OLS在Stata的实现作为入门,体会Stata的简单与强大。
案例:美国电力企业的规模效应;冰淇淋的需求。
第四讲,工具变量法
由于双向因果、遗漏变量、度量误差的普遍存在,内生性是实证研究的常见难题,而工具变量法是解决内生性的通用利器,包括2SLS、GMM、近乎外生的IV、控制函数法(Control Function)。
案例:殖民者死亡率与制度;出生季度与教育年限;经济增长与非洲内战;国企改革的作用;警察与犯罪率;看电视与小儿自闭症;美国年轻男子的教育回报。
第五讲,二值选择模型
被解释变量为虚拟变量的二值选择模型有着广泛的应用。包括Probit,Logit,MLE,QMLE,ivprobit,二元Probit,以及二值选择模型中的交互效应等。
案例:美国妇女的就业。
第六讲,静态面板
面板数据由于能控制个体异质性(heterogeneity),缓解遗漏变量偏差,在实践中越来越重要。静态面板是最常见的面板,包括固定效应、随机效应、时间效应、双向固定效应、个体时间趋势、交互固定效应(interactive fixed effects)等。
案例:美国交通死亡率,nlswork数据。
第七讲,动态面板
经济现象常具有某种惯性或部分调整,即被解释变量的滞后值出现在方程右边。动态面板也因为可自带工具变量而应用广泛。包括面板工具变量法(Panel IV)、差分GMM、水平GMM与系统GMM等。
案例:美国工人的工资决定。
第八讲,非参数与半参数估计
非参与半参方法(Nonparametric and Semiparametric Estimations)由于其稳健性而日益进入标准的计量工具箱,包括核密度估计、非参数回归与半参数回归等。
案例:交互效应的设定误差;摩托车撞击实验;美国电力企业的规模效应。
第九讲,随机实验与自然实验
实验方法因其可信度而日益兴起,包括随机实验、第一类与第二类自然实验。
案例:劳动力市场的三个经典田野实验;最低工资立法与劳动力需求;越战老兵的长期收入。
第十讲,双重差分法(Difference in Differences)
双重差分法(Difference-in-Differences)利用面板数据的优势,可克服部分内生性,是研究政策或项目处理效应(treatment effects)的主要工具。包括双重差分法、平行趋势假设、渐进DID(异时DID、交错DID)、广义DID、三重差分法等。
案例:伦敦霍乱的自然实验;大萧条货币政策与银行数量;最低工资立法与劳动力需求;银行管制放松与收入分配(Big Bad Banks);茶叶价格与性别比例;废除科举与革命起义;人工智能与国际贸易。
第十一讲,匹配估计量(Matching Estimators)
基于反事实的框架,根据个体进入处理组的概率(即倾向得分)寻找最佳替身进行匹配估计,这是研究处理效应的一种深邃思想与方法。包括倾向得分匹配(Propensity Score Matching)、马氏近邻匹配(NN Matching)、粗糙化精确匹配(Coarsen Exact Matching)、双重差分倾向得分匹配(PSM-DID)等。
案例:就业培训的处理效应;最低工资立法与劳动力需求。
第十二讲,断点回归(Regression Discontinuity Design)与拐点回归(Regression Kink Design)
由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐。内容包括精确断点回归、模糊断点回归、密度(操纵)检验、稳健性检验、拐点回归等。
案例:淮河以北冬季燃煤取暖与人均寿命;扶贫政策的效应;买房落户与户口价值;美国参议院选举的在位者优势;奖学金与大学入学;失业保险与失业期限。
第十三讲,合成控制法(Synthetic Control Method)
在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的新兴强大方法。包括合成控制法的原理、算法、安慰剂检验、稳健性检验等。
案例:西班牙巴斯克地区恐怖活动的经济后果;加州控烟法的成效;德国统一的效应。
第十四讲,回归控制法(Regression Control Method)
与合成控制法类似,但使用回归法来构造合成控制地区(Hsiao et al., 2012),比合成控制法更为简单易行。分位数控制法(quantile control method)。
案例:中国香港回归以及与中国内地经济整合的效应;四万亿经济刺激的效应;上海与重庆房产税试点的效应。
第十五讲,异质性处理效应(Heterogeneous Treatment Effects)
本讲包括异质性工具变量法的局部平均处理效应(LocalAverage Treatment Effect,简记LATE),以及双向固定效应模型的异质性处理效应(de Chaisemartin and D'Haultfoeuille, 2020)、模糊双重差分法(fuzzy DID)等。
案例:就业培训项目的不完全遵守(imperfect compliance);越战老兵的长期收入;报纸数量与大选投票率。
图3. 本次课程讲义封面
除了授课满满的干货,课程资料还提供了100余篇陈老师精选的论文帮助大家掌握。陈强老师每天的课后答疑无时限,虽然人山人海,但总能让学员们茅塞顿开:
图4. 陈老师课后答疑无时限
学员们在聆听陈强老师对其他学员的解答时,也获益匪浅。为此,有学员在感谢陈强老师与经管之家之余,还特别“谢谢各位学友‘简单’发散大胆深入的好问题”,使得“这个五一难忘充实高效”:
陈老师的精彩教学,深入浅出,化难为易,直指人心,极大地缩短了学生们计量入门进阶的时间,使得学员们慕名而来,满载而归,收获颇丰:
有些学员表示,课程超级棒,可以“学完直接回去修改毕业论文”:
学员们更为陈强老师持续五天的敬业、专业与真心付出所深深打动:
有些学员则庆幸高级计量现场班,给了自己与陈强老师近距离接触的机会,发现坊间久负盛名的“计量男神”其实非常平易近人,几乎有问必答,而且从不拒绝与粉丝们合影与签名。
更有学员不仅得到陈强老师的签名合影,甚至还有幸共进早餐,“第一次经历这样的五一精神物质双丰收”:
在结束五天现场班之际,学员们心怀感恩,重拾信心,期待迅速成长,对自己未来的学术道路充满了憧憬:
据悉,陈强老师的下一期高级计量及Stata现场班,将于2021年国庆节(10月1-5日)在北京举行,已开始占位抢座,详情参见页底“阅读原文”。
参考文献
陈强,《高级计量经济学及Stata应用》,第2版,高等教育出版社,2014年(久负盛名的配套五天现场班,详情见海报)
陈强,《计量经济学及Stata应用》,高等教育出版社,2015年(好评如潮的配套教学视频,可在 Peixun.net 或网易云课堂购买)
陈强,《机器学习及R应用》,高等教育出版社,2020年11月,472页,双色印刷
陈强,《机器学习及Python应用》,高等教育出版社,2021年3月,632页,双色印刷(配套五天现场班,详情见海报)
详情可点击页底“阅读原文”或请联系(根据缴费顺序安排座位哦):
尹老师
QQ:42884447
Tel:010-53352991
Mail:yinna@pinggu.org
We chat:yinyinan888
陈强老师简介
陈强,男,1971年出生,山东大学经济学院教授,数量经济学博士生导师。
分别于1992年、1995年获北京大学经济学学士、硕士学位,后留校任教。2007年获美国Northern Illinois University数学硕士与经济学博士学位。已独立发表论文于Oxford Economic Papers (lead article), Economica, Journal of Comparative Economics,《经济学(季刊)》、《世界经济》等国内外期刊。著有畅销本科教材《计量经济学及Stata应用》,研究生教材《高级计量经济学及Stata应用》、《机器学习及R应用》与《机器学习及Python应用》,以及好评如潮的本科计量教学视频(Peixun.net 或网易云课堂)。2010年入选教育部新世纪优秀人才支持计划。
(c) 2021, 陈强,山东大学经济学院
www.econometrics-stata.com
转载请注明作者与出处
Our mission is to make econometrics easy,
and facilitate convincing empirical works.