GSIS特邀论文|武汉大学张良培教授:基于图学习的高光谱图像降维研究综述
高光谱成像技术通过跨越可见光到红外光谱的大量连续狭窄波段获取图像数据,由于不同材料在不同电磁波谱下的反射率存在差异,该技术对分辨材料的成分非常有效,已广泛应用于农林、地质、海洋、气象等领域。
在这些应用中获得的高光谱图像(Hyper-Spectral Image,HSI)包含丰富的光谱和空间特征,但同时窄带间具有很强的相关性,存在大量冗余信息。
图学习是分析数据内在特性的一种有效方法。它在数据降维和分类等领域得到了广泛的应用。
GSIS特邀武汉大学张良培教授撰写学术论文Review on graph learning for dimensionality reduction of hyperspectral image,介绍了基于图学习的高光谱图像降维问题,重点讨论了几种有代表性的图学习方法,包括两种流形学习方法、两种稀疏图学习方法和两种超图学习方法。
扫描上方二维码可阅读、下载本篇论文。
引用本文
Liangpei Zhang, Fulin Luo (2020) Review on graph learning for dimensionality reduction of hyperspectral image, Geo-spatial Information Science, 23:1, doi: 10.1080/10095020.2020.1720529
本文研究内容
首先,作者回顾了图学习的发展历程及其在高光谱图像中的应用。
然后,主要讨论了具有代表性的图学习方法:
①两种显式学习方法(邻域保存嵌入(Neighborhood Preserving Embedding,NPE)和位置性保存投影(Localality Preserving Projections,LPP))
②两种稀疏图学习方法(稀疏性保存图嵌入(Sparsity Preserving Graph Embedding,SPGE)和基于稀疏图的判别分析(Sparse Graph-Based Discriminant Analysis,SPGE)
③两种超图学习方法(二元超图(Binary Hypergraph,BH)和判别超拉普拉斯投影(Discriminant Hyper-Laplacian Projection,DHLP)。
作者简介
张良培 1982年获得湖南师范大学物理学士学位,1988年获得中国科学院西安光学与精密力学研究所光学硕士学位,1998年获得武汉大学摄影测量与遥感博士学位。现任武汉大学测绘遥感信息工程国家重点实验室教授,“长江学者”讲座教授,“2011-2016年中国国家重点基础研究项目”首席科学家。他的研究兴趣包括高光谱遥感、高分辨率遥感、图像处理以及人工智能。
Liangpei Zhang received the B.S. degree in physics from Hunan Normal University, Changsha, China, in 1982,the M.S. degree in optics from the Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China, in 1988, and the Ph.D. degree in photogrammetry and remote sensing from Wuhan University, Wuhan, China, in 1998.
He is currently the Head of the Remote Sensing Division with the State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University.
He is also a “Chang-Jiang Scholar” Chair Professor appointed by the Ministry of Education of China, Beijing, China, and a Principal Scientist for the China State Key Basic Research project 2011-2016 appointed by the Ministry of the National Science and Technology of China to lead the remote sensing program in China. His research interests include hyperspectral remote sensing, high-resolution remote sensing, image processing,and artificial intelligence.
罗甫林 2016年和2013年分别获得重庆大学仪器科学与技术博士学位和硕士学位。现任武汉大学测绘遥感信息工程国家重点实验室副研究员, 研究方向是高光谱图像分类、图像处理、稀疏表示和流形学习。
Fulin Luo received the Ph.D and M.S. degree in Instrument Science and Technology from Chongqing University, Chongqing, China, in 2016 and 2013, respectively. He is currently an Associate Researcher with the State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University. His research interests are hyperspectral image classification, image processing, sparse representation and manifold learning in general.
前沿观点
提出了一个统一的框架。
在这个框架中,主成分分析、线性判别分析、局部线性嵌入、拉普拉斯特征映射、邻域保存嵌入和局部保存投影可以被重新定义为不同的图学习方法。
它们的主要区别在于相似度矩阵和约束矩阵的构建。
这些图学习方法能够非常有效地揭示数据的内在相似关系,从而反映数据的同质性。它们已被广泛用于学习高光谱影像的维度特征。
On the basis of the above methods, a unified framework was proposed to understand these methods. This framework can be represented by a graph (Yan et al. 2007).
In this framework, PCA, LDA, LLE, LE, NPE, and LLP can be redefined as different graph learning methods. Their main differences are the construction of similarity matrix and constraint matrix.
These graph learning methods are very effective to reveal the intrinsic similar relationships of data which can reflect the homogeneity of data. They have been widely used to learn the dimensional features of HSI.
为了自适应地揭示数据的内在结构,稀疏表示被引入到图学习中。稀疏表示是用一个过完备的字典对样本进行线性重建。
对于重构的系数,大部分是零,只有少数是非零,这些系数被称为稀疏系数。根据稀疏系数,系数的关系可以用来自适应地表示数据的内在属性。
然后,可以根据数据的稀疏关系构建稀疏图。稀疏图对数据噪声具有鲁棒性,并且拥有每个样本的数据自适应结构。
To adaptively reveal the intrinsic structures of data, sparse representation was introduced into graph learning. Sparse representation is to linearly reconstruct a sample with an over-complete dictionary (Peng, Li, and Tang 2019).
For the reconstructed coefficients, most of them are zeros and only a few of them are non-zeros which are termed sparse coefficients. According to the sparse coefficients, the relationship of coefficients can be used to adaptively represent the intrinsic properties of data (Wright et al. 2009).
Then, a sparse graph can be constructed based on the sparse relationships of data. The sparse graph is robust to data noise and possesses datum-adaptive structures for each sample.
为了表示复杂的高阶结构,超图被引入到机器学习中,为了更好地揭示数据的内在结构,产生了许多超图学习方法。
二元超图(BH)是高光谱影像特征表示的经典方法,它使用k近邻构造超图模型。
To represent the complex high-order structures, hypergraph was introduced into machine learning and many hypergraph learning methods were generated to better reveal intrinsic structures of data (Ji et al. 2014).
Binary Hypergraph (BH) is a classic method for the feature representation of HSI which uses k nearest neighbors to construct the hypergraph model (Yuan and Tang 2015).
文章图表
Figure 1. Comparison of graph and hypergraph.
(a) Binary graph G, (b) Hypergraph GH, (c) Incidence matrix H.
关于 Geo-spatial Information Science
Geo-spatial Information Science(GSIS)是由武汉大学主办的测绘遥感专业英文期刊,主编为中国科学院院士、中国工程院院士李德仁教授。2020年9月被SCIE收录。
GSIS 采用开放获取的出版模式,就是大家所说的开源期刊/OA期刊(Open Access),文章一经发表,可马上被全球读者免费全文下载,这种模式可以让你的文章有更多的曝光度。
目前,在GSIS发表文章不需缴纳审稿费、论文处理费等任何费用,完全免费。欢迎广大测绘遥感学科的科研工作者投稿。如果您有需要抢首发权的高质量文章,可与我们联系gsis@whu.edu.cn,主编/国际副主编亲自为您处理,编辑部提供随时随地的疑问解答与状态跟踪。
期刊官网:
https://www.tandfonline.com/tgsi
投稿网址:
https://rp.tandfonline.com/submission/create?journalCode=TGSI
虚拟专辑
GSIS虚拟专辑|地球空间信息科学的趋势与挑战,UPINLBS、VGI
热点专刊
GSIS专辑精选| 无处不在的定位、室内导航和基于位置的服务
论文推荐
GIS的未来是什么?——ESRI总裁Jack Dangermond和美国科学院院士Michael F. Goodchild的思考
GSIS特邀论文|ISPRS主席Christian Heipke:深度学习与摄影测量和遥感学科的结合
GSIS特邀论文|ISPRS荣誉会员John Trinder:用遥感来评估城市环境可持续发展
GSIS特邀论文|嫦娥三号和嫦娥四号月球车任务的地理空间技术
专家报告
学术报告|李德仁院士:从对地观测到对人观测——论社会地理计算
学术报告|龚健雅院士:位置关联的多网数据叠加协议与智能服务技术
长按二维码 关注GSIS微信号
GSIS-WHU
Geo-Spatial Information Science
SCIE数据库收录期刊
中国最具国际影响力学术期刊
中国科技期刊卓越行动计划入选期刊
https://www.tandfonline.com/tgsi
推特账号|GSISOffice