Transformer升级之路:逆用Leaky ReRoPE
©PaperWeekly 原创 · 作者 | 苏剑林
单位 | 科学空间
研究方向 | NLP、神经网络
在《Transformer升级之路:无限外推的ReRoPE?》中,笔者提出了 ReRoPE 和 Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展 LLM 的 Context 长度,并且实现了 “longer context, lower loss” 的理想特性,此外跟 NTK-aware Scaled RoPE 不同的是,其中 ReRoPE 似乎还有表现出了无限的 Context 处理能力。
回顾
让我们不厌其烦地重温一下:RoPE 形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
笔者将以上想法称之为 “InvLeaky ReRoPE(Inverse Leaky ReRoPE)”。事不宜迟,我们马上做实验测试。
那么,InvLeaky ReRoPE 对训练速度有多大影响呢?在上述实验中,模型是 1 亿参数量,训练长度是 512,每 1000 步的训练时间从 330 秒增加到了 350 秒,增加不到 10%,当然这里边有 GAU 的原因,因为 GAU 是单头的注意力,本就比多头注意力快。如果多头注意力或者训练长度更长的话,增加幅度应该会大一些,但目测应该不超过 50% 都是可以接受的。
本文提出了 Leaky ReRoPE 的“逆用”做法,通过在训练阶段使用更大步长的 Leaky ReRoPE,使得推理阶段可以退回常规的 RoPE,从而可以保持推理速度不变,实验结果显示这种做法还是有一定的竞争力的。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧