查看原文
其他

npj: 硅酸盐晶体成核—用于模拟结晶动力学的隐式玻璃模型

npj 知社学术圈 2022-09-26

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

预测玻璃-陶瓷材料中的晶体成核行为对于构造新材料十分重要。由于成核和生长过程十分复杂,模拟晶体微结构演变,着实是一种挑战。

来自美国康宁公司、宾州州立大学和阿贡国家实验室的跨学科团队,发展了隐式玻璃模型(IGM),其采用广义Born模型,用连续介质等效地替换了玻璃,使得模拟可以集中于研究原子生长团簇以及可作为异相成核位点的未溶解杂质的演变过程。他们将IGM模型应用于几种不同的系统,即二元硅酸钡、二元硅酸锂和三元钠钙硅酸盐,并基于已有相图验证了他们模拟得到的化合物。此外,他们还预测了偏硅酸锂的形核团簇,并用SEM观察了成核的结构,发现模拟得到的结构与实验测量结果相符,从而证明了IGM模型用于晶体形核模拟的有效性。该文近期发表于npj Computational Materials 4:59(2018)。

 

该文近期发表于npj Computational Materials 4: 59 (2018),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。



Implicit glass model for simulation of crystal nucleation for glass-ceramics 


Matthew E. McKenzie, Sushmit Goyal, Troy Loeffler, Ling Cai, Indrajit Dutta, David E. Baker & John C. Mauro 


Predicting crystal nucleation behavior in glass-ceramic materials is important to create new materials for high-tech applications. Modeling the evolution of crystal microstructures is a challenging problem due to the complex nature of nucleation and growth processes. We introduce an implicit glass model (IGM) which, through the application of a Generalized Born solvation model, effectively replaces the glass with a continuous medium. This permits the computational efforts to focus on nucleating atomic clusters or undissolved impurities that serve as sites for heterogeneous nucleation. We apply IGM to four different systems: binary barium silicate (with two different compositions), binary lithium silicate, and ternary soda lime silicate and validate our precipitated compositions with established phase diagrams. Furthermore, we nucleate lithium metasilicate clusters and probe their structures with SEM. We find that the experimental microstructure matches the modeled growing cluster with IGM for lithium metasilicate.


扩展阅读

 

npj: 氧化钛电子化合物材料—预测的电子新位置

npj: Dirac半金属预测—新材料发现

npj: 皮肤白嫩无皱纹—粒子模型算得准

npj: 扫描探针显微镜插上机器学习的翅膀

npj: 相稳定性预测—看看熵的脸色

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存