其他
今日Nature: MIT赵选贺首创人体双面胶,5秒粘合组织与植入设备
海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
全球每年要进行2.3亿场以上的大型外科手术。在外科手术中,医生大多通过手术缝合线(或手术缝合针)实现伤口闭合及组织连接。手术缝合需要熟练的医生操作,但仍然可能造成组织再创伤、疼痛、发炎以及结疤。另外,用手术缝合线(针)连接的结肠、食道、呼吸道和肺等组织和器官,有高达30%的再次泄漏的风险。在美国,接合手术的二次泄漏每年导致各类患者数十亿美元的损失。因此,亟待研发一种可靠的人体组织接合手段。生物胶水具有替代和辅助手术缝合线(针)的潜力,但是现有的生物胶水尚存在粘接强度低、粘接速度慢、生物相容性差、与组织力学性能不兼容、不方便保存使用等缺陷。
人体双面胶粘接机理
人体双面胶的形态特性
人体双面胶的粘附性能
双面胶与不同材料粘接
人体双面胶的生物
相容性与可降解性
人体双面胶的可能应用
不同应用场景
模型指导设计人体双面胶
大家点评
“This is an excellent innovation by Professor Zhao's team, which essentially lies in a very simple yet extremely effective concept of double-sided tissue adhesive. It fundamentally deviates from how bioadhesives are traditionally designed and implemented -- instead of starting wet, this double-sided tape begins dry and thin. Intriguingly, such fundamental deviation lands beautifully on a fundamental improvement as well -- as soon as the tape is applied at the target wound site, the wetting process that simultaneously removes water molecules from the tissue surface induces almost instantaneous strong physical bonding, which overtime, transitions into stable chemicalbonding through the built-in reactive groups as the swelling of the tape continues to develop into a piece of biocompatible, biodegradable, water-rich hydrogel. The formed hydrogel, due to its double-network nature, stays mechanically robust leading to perfect sealing of the wound until it heals. I pleasantly anticipate tremendous translational potential of this elegant approach into various clinical practices as well as basic engineering applications, in particular in situations where surgical operations, such as suturing, are not straightforward.”
“Combining two innovative concepts, the research team succeeded in adhering quickly and effectively to the wet and soft surface of a tissue, and in maintaining good adhesion and mechanical properties for several days without causing too much inflammatory response.”
作者展望
该工作由MIT赵选贺团队主导完成。通讯作者赵选贺博士是MIT终身教授。该工作的第一作者是赵选贺团队的博士生Hyunwoo Yuk及MIT博士生Claudia E. Varela。其他作者包括Christoph S. Nabzdyk、Xinyu Mao、Robert F. Padera和Ellen T. Roche等。
MIT赵选贺团队(http://zhao.mit.edu)专注推动软材料和人机共融科技,最近的成果包括:
机理研究
首次提出干燥交联(dry-crosslinking)机理,用于粘合各种潮湿表面(wet adhesion)。发明人体双面胶(tissue double-sided tape),能够在5秒内粘合软湿组织器官和植入设备,并保持长期坚韧、柔软且生物兼容。Nature (2019) 首次提出水凝胶超韧粘结 (tough adhesion)的机理并实现与各种材料的超韧粘结 Nature Materials, 15, 190 (2016) 首次提出3D打印铁磁软材料和软机器 Nature, 558, 274 (2018) 首次提出坚韧水凝胶高弹体聚合物(tough hydrogel-elastomer hybrid)并实现不干水凝胶 (anti-dehydration hydrogel) Nature Communications, 7, 12028 (2016) 首次实现超高抗疲劳断裂(anti-fatigue-fracture)水凝胶 Science Advances, 5: eaau8528 (2019);PNAS,116 (21) 10244-10249 (2019) 首次提出3D打印超韧超弹水凝胶的方法并打印各种载细胞的超韧超弹水凝胶结构 Advance Materials, 27, 4035 (2015) 首次提出可重复折叠大面积石墨烯 Nature Materials, 12, 321 (2013) 首次发现并解释电致褶皱(electro-creasing)和电致空穴(electro-cavitation)现象 Physical Review Letters, 106, 118301 (2011); Nature Communications, 3, 1157 (2012).
首创铁磁软体导丝机器人,并遥控巡航复杂血管网络 Science Robotics, 4, eaax7329 (2019) 首创可食用水凝胶电子并用来长期监测核心体征 Nature Communications, 10, 493 (2019) 首创可拉伸水凝胶电子 Advanced Materials 28, 4497 (2016) 首创液压水凝胶驱动器和机器人 Nature Communications, 8, 14230 (2017) 首创超高拉伸水凝胶光纤 Advanced Materials, 28, 10244 (2016) 首次实现各种医疗仪器上的超韧水凝胶涂层 Advanced Healthcare Materials,6,1700520 (2017); Advanced Materials, 1807101 (2018) 首创并3D打印可拉伸生命器件 (stretchable living devices)PNAS, 114, 2200 (2017);Advanced Materials, 1704821 (2017) 首次应用力学失稳得到人工粘膜 PNAS, 115, 7503 (2018)
定义水凝胶生物电子学(hydrogel bioelectronics) Chemical Society Review, 48, 1642 (2019) 系统阐述水凝胶增强 (high strength)的机理 Proceedings of the National Academy of Sciences, 114, 8138 (2017) 系统阐述多种水凝胶增韧(high toughness)的机理 Soft Matter, 10, 672 (2014)
点击“阅读原文”查看论文原文。
扩展阅读
MIT赵选贺团队磁控软体机器人,微创清理复杂血管MIT赵选贺团队研发高性能纯导电聚合物水凝胶
MIT赵选贺团队发明可食用水凝胶电子,监控核心体征30天
MIT赵选贺团队再生人体器官内褶皱组织
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方