海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
电畴壁是具有不同极化方向铁电畴的界面,其尺度在纳米量级。所谓界面即器件。近年来,基于铁电畴的纳米电子器件探索成为近年来的研究热点。Seidel等发现BiFeO3的电畴壁具有明显高于体材料的导电性开启了电畴作为新型纳米电子器件的新范式。随后,人们基于畴壁构建了kHz高频二极管和晶体管原型器件。然而,要与计算机应用对接,器件的频率尚需进一步提升。物理上,畴壁的电导率源于局域声子的激发。因而,理解局域声子的行为对于发展高频畴壁器件具有十分重要的意义。
来自意大利技术研究所的科研人员基于Ginzburg–Landau–Devonshire方程对BiFeO3中畴壁的振荡开展了介观尺度模拟。他们发现畴壁局域声子的频率范围极宽,颠覆了人们之前的观点。基于宽频声子,他们成功解释了最近实验上观测到的电导率的宽频响应。有趣的是,实验上观测到的响应是由电畴的R71°滑移模式主导的,而这种模式原则上是不能激发的。他们发现倾斜畴壁处存在电致伸缩和弹性共同作用导致了局域声子极化的不对称性,进而导致了反常的模式激发。利用畴壁声子谱和选择规则,他们进一步建立了模拟扫描阻抗谱的计算模型。这项工作有望激发对电畴壁局域声子频率的实验探索,并指导基于电畴壁的THz器件的设计。该文近期发表于npj Computational Materials 6: 48 (2020),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Domain wall-localized phonons in BiFeO3: spectrum and selection rules
Peng Chen, Louis Ponet, Keji Lai, Roberto Cingolani & Sergey Artyukhin
Ferroelectric domain walls (DWs) are nanoscale topological defects that can be easily tailored to create nanoscale devices. Their excitations, recently discovered to be responsible for GHz DW conductivity, hold promise for faster signal transmission and processing compared to the existing technology. Here we find that DW phonons have unprecedented dispersion going from GHz all the way to THz frequencies, and resulting in a surprisingly broad GHz signature in DW conductivity. Puzzling activation of nominally forbidden DW sliding modes in BiFeO3 is traced back to DW tilting and resulting asymmetry in wall-localized phonons. The obtained phonon spectra and selection rules are used to simulate scanning impedance microscopy, emerging as a powerful probe in nanophononics. The results will guide the experimental discovery of the predicted phonon branches and design of DW-based nanodevices operating in the technologically important frequency range.
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方