由于有序和无序区域之间的相互作用,预测半结晶聚合物中的电荷载流子迁移率很有挑战性。电荷传输在这类系统中很复杂,其原因在于能量无序在有序区域和无序区域都存在,链长度的存在一定的分布,以及有无序区域之间存在不同的连通性。有序区域中的聚合物链间的电子耦合较弱,但对于电荷传输仍然很重要。由于结构无序,非晶区域中相邻链之间的电子耦合更广泛。在有序区域中,传输通过扩展的电子态发生,而在无序区域中,电荷是通过在局部位点之间跳跃来移动。高分辨率电子显微镜和X射线散射方法为揭示有序和无序区域是如何影响电荷传输提供了宝贵机会。然而,目前如何模拟两个区域间的电荷传输依然很有挑战。例如,传统的分析方法无法解释细节的结构效应,而数值模型对于详尽(且具有统计意义)的分析来说是非常昂贵的。
来自加州大学圣巴巴拉分校的 Michael L. Chabinyc 和爱荷华州立大学的 Baskar Ganapathysubramanian 等人,提出了一种有效的计算方法来模拟有机固体中的电荷传输,即使用图论来研究分子排序对电荷迁移率。他们通过将聚合物链的空间分布转换为一组图形节点和边,将该方法应用于半导体聚合物。研究发现,该方法能准确地再现向列和各向同性系统中传输的分析结果,以及实验上观察到的电荷载流子迁移率对聚合物形态的依赖性结果。此外,作者还预测了电荷迁移率对模型形态的关键缺陷,以及链间和链内传输变化的依赖性。他们预测了一个临界缺陷密度,如果缺陷密度高于该临界值,迁移率将会急剧下降。该工作使快速评估半导体聚合物器件中的电荷迁移率成为可能。该文近期发表于npj Computational Materials 8:38 (2022),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
A graph based approach to model charge transport in semiconducting polymers
Ramin Noruzi, Eunhee Lim, Balaji Sesha Sarath Pokuri, Michael L. Chabinyc & Baskar Ganapathysubramanian
Charge transport in molecular solids, such as semiconducting polymers, is strongly affected by packing and structural order over several length scales. Conventional approaches to modeling these phenomena range from analytical models to numerical models using quantum mechanical calculations. While analytical approaches cannot account for detailed structural effects, numerical models are expensive for exhaustive (and statistically significant) analysis. Here, we report a computationally scalable methodology using graph theory to explore the influence of molecular ordering on charge mobility. This model accurately reproduces the analytical results for transport in nematic and isotropic systems, as well as experimental results of the dependence of the charge carrier mobility on orientation correlation length for polymers. We further model how defect distribution (correlated and uncorrelated) in semiconducting polymers can modify the mobility, predicting a critical defect density above which the mobility plummets. This work enables rapid (and computationally extensible) evaluation of charge mobility semiconducting polymer devices.