海归学者发起的公益学术平台
分享信息,整合资源
交流学术,偶尔风月
有机分子晶体具有复杂的晶体结构,电子自由度和结构自由度之间存在着复杂的相互作用。这类材料的电子性质多样,从带隙角度可包含金属、半导体、甚至绝缘体,从磁性角度则可具有铁电性、磁性和超导性等。有机分子晶体(OMC)也是一种用途广泛的材料,在电子、发光二极管、自旋电子学、电池和太阳能电池等领域有着广泛的应用。在这些有机材料中,载流子迁移率是一个关键性的指标。然而,理解电荷输运和准确预测有机分子晶体中电荷的迁移率,仍有非常大的挑战。有机分子晶体 (OMC) 中的电荷输运通常分为两种极限状态:以弱的电子-声子(e-ph)相互作用为特征的能带传输和由强的e-ph相互作用形成的局域极化子引起的电荷跃迁。然而,在这两种极限情况之间,有一种不太容易理解的中间状态:存在极化子?可输运又不通过跃迁而发生。
为了详细探究这一状态,美国加州理工学院应用物理与材料科学系的Marco Bernardi教授团队,研究了萘晶体中的电子迁移率,这是有机分子晶体 (OMC)中中间电荷迁移的一个典型案例。结合有限温度累积法和Green-Kubo输运计算,作者证明了对中间体系中电子迁移率及其温度依赖性的准确预测。结果揭示了分子间和分子内声子之间微妙的相互作用:具有低能量的分子间声子决定准粒子峰的展宽,而分子内声子则负责形成极化子和伴峰。这两种声子都限制了体系的迁移率。宽的伴峰从准粒子峰上抹除了光谱权重,修改了迁移率及其温度依赖性。通过捕捉这些微妙的极化子效应,累积加Kubo法(CK)解决了玻尔兹曼输运方程(BTE)对中间输运机制描述的不足。作者还强调了CK方法在描述分子平面间的极子跃迁方面的局限性。综上所述,这项工作推进了对中间输运系统的微观理解,并为准确计算OMC中载流子迁移率的第一性原理计算铺平了道路。该文近期发表于npj Computational Materials 8:63 (2022),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Intermediate polaronic charge transport in organic crystals from a many-body first-principles approach Benjamin K. Chang, Jin-Jian Zhou, Nien-En Lee & Marco Bernardi Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime.