EAER综述 | 农业和应用经济学中的机器学习
*中文标题和摘要系简单翻译,可能存在部分错误,请以英文为准
————
摘要:
这篇综述从应用经济学家的角度介绍了机器学习(Machine Learning,ML)的方法。我们首先介绍与计量经济学实践相联的关键机器学习方法。然后,我们在应用经济学中确定计量经济学和模拟模型工具箱的当前不足,并探索机器学习提供的潜在解决方案。我们在预测和因果分析中探究了诸如不灵活的模型设定,非结构化数据源和大量解释变量之类的案例,并着重指出了复杂的仿真模型所面临的挑战。最后,我们认为,经济学家在解决用于定量经济分析的机器学习的不足时起着至关重要的作用。
Abstract
This review presents machine learning (ML) approaches from an applied economist’s perspective. We first introduce the key ML methods drawing connections to econometric practice. We then identify current limitations of the econometric and simulation model toolbox in applied economics and explore potential solutions afforded by ML. We dive into cases such as inflexible functional forms, unstructured data sources and large numbers of explanatory variables in both prediction and causal analysis, and highlight the challenges of complex simulation models. Finally, we argue that economists have a vital role in addressing the shortcomings of ML when used for quantitative economic analysis.
原文链接(点击“阅读原文”跳转):
http://doi.org/10.1093/erae/jbz033
将要出版的Handbook of Agricultural Economics Volume 5有一章内容专门讲农业和应用经济学中的大数据和机器学习,期待文章早日上线
——END
相关阅读: