人教版五年级数学上册教案(四)
第四单元:可能性
教材分析
可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。
学情分析
五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。
教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。
教学目标
知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。
数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。
问题解决:能由一些简单事件发生的可能性大小逆推比较事件多少。
情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。
教学重点:会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。
教学难点:能根据可能性的大小判断物体数量的多少。
课时安排:3课时
1.可能性………………………………2课时
2.掷一掷………………………………1课时
课题: 第四单元:可能性(1) 第 1 课时 总序第 1 个教案
课型: 新授
教学内容:教材P44例1及教材练习十一第1、2、3、4题。
教学目标:
知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。
过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。
情感、态度与价值观:培养学生的表达能力和逻辑推理能力。
教学重点:体验事件发生的等可能性。
教学难点:会用“可能”、“不可能”正确地描述事件发生的可能性。
教学方法:采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。
教学准备:师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。
教学过程
一、情境引入
1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?
让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书….
2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)
3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它全会,就是不会把歌唱。学生可能会说:铅笔。
师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。
4.出示奖品铅笔,并说明这是奖励表现最优秀的学生的,希望大家都能努力。
二、互动新授
1.引入:下周班会,老师想组织大家表演节目,每个人都有机会表演。但节目形式不能重复,每个类型只能有一个节目,大家讨论一下,我们应该怎样确定每一个同学演什么节目呢?
组织小组讨论,大部分同学会想到用抽签的方法来决定。
2.活动:出示三张卡片,上面分别写上唱歌、跳舞、朗诵,找同学上来抽一张,引导学生先思考一下,会抽到什么?
学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。
师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。
3.抽签指生抽一张。(以抽到跳舞为例)
师引导:如果再找一名同学来抽签,可能会抽到什么?
生可能回答:可能是唱歌,也可能是朗诵。
引导学生质疑:有没有可能会抽到跳舞?
指生回答:不可能,因为剩的两张签里没有跳舞。
找生抽一张,验证学生的猜测是否正确。
(以学生抽到的是朗诵为例)
4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?
生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。
5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能不可能 一定)
三、巩固拓展
1.完成教材第45页“做一做”。
出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。
引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。
让学生在小组内组织摸一摸活动,并验证,再集体汇报。
2.完成教材第47页“练习十一”第1题。
让学生说一说,并说明理由。
3.完成教材第47页“练习十一”第2题。
先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。
4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。
四、课堂小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1.判断事件发生的可能性的几种情况:可能、不可能、一定。
2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。
作业:教材练习第47页第3、4题。
板书设计:
可能性(1)
可能(不能确定)
可能性 不可能
(完全确定)
一定
课题: 第四单元:可能性(2) 第 2 课时 总序第 2 个教案
课型: 新授
教学内容:教材P45~46例2、例3及练习十一第5、8题。
教学目标:
知识与技能:让学生知道事件发生的可能性是有大小的。
过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。
情感、态度与价值观:培养学生的动手操作、归纳和判断能力。
教学重点:会比较两种结果事件的可能性大小。
教学难点:能根据可能性的大小逆向思考比较事件数量的多少。
教学方法:游戏教学法;自主探索、合作交流。
教学准备:多媒体、盒子、彩色棋子。
教学过程
一、复习引入
1.出示:(1)用合适的语言描述下面事件发生的可能性。
①太阳( )从东边落下。②明天( )考试。
③冬天( )会下雪。 ④掷一枚硬币( )正面朝上。
(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。因为盒子里面既有红色棋子也有黄色棋子。
质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?
引导学生思考,在小组内交流讨论。学生可能会说,红色棋子摸到最有可能,因为盒子里红棋子比黄棋子多。
2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)
二、互动新授
1.体验可能性有大有小。
出示教材第45页例2情境图。
(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)
(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的多,蓝色的少。)
(3)追问:这说明了什么?
(摸到红棋子的可能性比较大,蓝棋子的可能性小。)
(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色),那是不是一定能摸到红色呢?
(不一定,因为蓝色摸到的可能性虽小也有可能会摸到。)
2.动手操作。
(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。
小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?
指名小组汇报,对不同结果的小组进行比较。
(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?
引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)
(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。
3.出示教材第46页例3。
(1)先让学生观察出示的记录结果,再指名回答例题中的问题。
(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。
八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大在,黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)
(2)引导小结方法:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。
三、巩固拓展
1.完成教材第45页“做一做”。
先让学生自主思考,小组交流,再汇报。并说出为什么这么想。
引导学生总结:在总数中占的颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。
2.完成教材第46页“做一做”第1题。
先让学生观察从图中能得到的信息,再说一说。
(盒子里红色的棋子多,黄色的棋子少)
引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)
四、拓展小结
师:这节课你们学了什么知识?有什么收获?
引导归纳:1.事件发生的可能性有大有小。2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。3.摸到的可能性大的说明在总数中占的数量多,摸到的可能性小的说明在总数中占的数量少。
作业:教材练习第47~48页练习十一第5、8题。
板书设计:
可能性(2)
大←→数量多
可能性
小←→数量少
课题: 第四单元:可能性—掷一掷 第 1 课时 总序第 3 个教案
课型: 活动
教学内容:教材P50~51及P48~49练习十一第6、7、9、10、11题。
教学目标:
知识与技能:使学生通过猜想、实验、验证的过程,巩固“组合”的有关知识,探讨事件发生的可能性大小。
过程与方法:通过活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会到数学在生活中的应用。
情感、态度与价值观:结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。
教学难点:让学生在“玩”中获得数学知识,在学中感受数学的趣味。
教学方法:创设情境;小组合作、实践操作。
教学准备:多媒体、骰子。
教学过程
一、创设情境,引入新课
出示骰子,师问:同学们见过骰子吗?你们在哪见过?它和数学有什么联系?(学生可能回答:在打麻将时、玩具上见过;骰子上有6个数字。)
学生回答后,师引导:这节课我们就来掷一掷骰子,通过游戏一起探究骰子里面还有哪些数学知识。
二、师生互动,探究新知
1.思考:如果同时掷出两颗骰子,它们出现的点数之和会有哪一些7
根据学生的回答板书:2、3、4、5……12。
追问:可能有1和13吗?为什么?
学生自主思考,通过组合知识得出结论。(不可能,因为两个数的和最小是2最大是12。)
2.游戏探究。
规则:把这11种结果分成两组:A组:1、2、3、4、10、11,B组:5、6、7、8、9。一共掷20次,总次数多者为胜。
(l)选择一组结果与教师进行比赛。
(2)两个小组为一个单位比赛,自由选择结果组别,4人轮流掷骰子,由组长记录试验数据,最后比较实验数据,分出胜负。
学生操作时,组员轮流掷骰子,组长负责填写数据。掷骰子时要注意先在手中晃几下再投入杯子中。
3.汇报比赛数据和结论,师汇总并引导学生比较总结。
比较发现:两数和为5~9出现的次数较多,说明B组获胜的可能性大。
引导思考:为什么会这样?
引导学生通过观察两数和的统计表,并通过举例说明:如和是6的情况:1+5,2+4,3+3三种情况;和是2只有1+1这一种情况。
比较总结:和是7出现的次数最多,和是5、6、8、9出现的次数比较多,和是2、3、4、10、11、12出现的次数比较少。
三、指导练习
1.教材第47页练习十一第9题。教师引导学生提出猜想,再组织全体不生参与演示,完成表格,验证猜想。
2.完成教材第49页练习十一第10题。
组织学生理解题目信息,让学生独立思考作答,小组订正。
3.完成教材第49页练习十一第11题。
(1)引导学生理解题意。小组内合作完成,集体订正。
(2)组织学生设计卡片,鼓励方案多样化。
四、拓展延伸
1.根据客观事实判断事件发生的确定性和不确定性。
出示:明天的篮球比赛,我们班一定会赢。这种说法正确吗?
思路引导:篮球比赛的结果有两种可能:一种是我们班赢,另一种是我们班输。也就是说,我们班可能会赢。这个结果不是按照我们班同学的意愿而实现的。
规范答案:这种说法不正确。明天的篮球比赛,我们班可能会赢。
教师小结:生活中事件发生的确定性和不确定性要根据客观事实进行判断,与个人的意愿无关。
2.根据图形区域大小判断可能性的大小
下面是百草园文具店的投资活动规则,看图想一想,抽到哪种奖品的可能性大?抽到哪种奖品的可能性小?
(满100元抽奖一次) | |
指针所在区域 | 奖品 |
红色区域 | 一个文具盒 |
黄色区域 | 一个笔记本 |
绿色区域 | 一支铅笔 |
第五单元:简易方程
教材分析
本单元主要学习的是用字母表示数、运算定律、计算公式和数量关系,学习方程的意义、等式的基本性质和解简易方程,以及在解决一些实际问题中简易方程的运用。在学生已有的算术和代数知识的基础上学习简易方程,有助于培养学生的抽象概括能力,发展他们思维的灵活性,并且能够巩固和加深所学的算术知识。
学情分析
用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。特别是用含有字母的式子来表示数量关系,更让学生感到困难。让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学生来说是认识上的一个飞跃。因此在教学中,教师要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。
学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x元,2+x 既表示苹果价格与香蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个式子,不是结果。而这正是学生学习简易方程的基础,所以要先学习用字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的式子表示数量和数量关系,这样由易到难,便于学生在数学认知上有更高的飞跃。
教学目标
知识技能:使学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简易方程。
数学思考:培养学生根据具体情况,灵活选择算法的意识和能力。
问题解决:能列简易方程来解决生活中的实际问题。
情感态度:使学生感受到数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。
教学重点:用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的习惯。
教学难点:用含有字母的式子表示数量关系,列方程解决实际问题
课时安排:20课时
1.用字母表示数……………………………6课时
2.解简易方程………………………………12课时
3.整理和复习………………………………2课时
课题: 第五单元:简易方程—用字母表示数
教学内容:教材P52~53例1、例2及练习十二第1、3、7、8题。
教学目标:
知识与技能:理解用字母表示数的意义和作用。
过程与方法:能正确掌握含有字母的乘法式子的简写。
情感、态度与价值观:在探索现实生活数量关系的过程中,体验用字母表示数的简明性。
教学重点:理解用字母表示数的意义和作用。
教学难点:掌握含有字母的乘法式子的简写。
教学方法:观察、比较、思考、交流
教学准备:多媒体。
教学过程
一、情境导入
1.导入:你今年几岁了?再过两年呢?再过三年、四年、n年呢?
学生回答自己的年龄,根据教师的问题回答:过几年就用年龄十几,n年就加n。
2.质疑:这里的n表示的是什么?(一个数)
3.揭题:今天咱们就来研究用字母表示数。(板书课题:用字母表示数)
二、互动新授
(一)教学用含字母的式子表示数量关系。
1.出示教材第52页例1。
引导:图中小红和爸爸也在探讨年龄的问题,从中你了解了哪些信息?
学生可能回答:小红1岁时爸爸31岁;爸爸比小红大30岁。
2.让学生尝试用算式表示爸爸的年龄。
出示教材第52页的表格,引导学生列式表示爸爸的年龄,并集体完成表格。
3.质疑:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子简明地表示出任何一年爸爸的年龄吗?
通过表格,学生能很快列出式子:小红的年龄+30=爸爸的年龄
追问:“小红的年龄”写起来有些麻烦,谁能想个办法让我们的书写更简便?
小组交流讨论,有些学生可能会想到用“小红”“红”代替小红的年龄,也有些学生可能会想到用一个字母或一个符号来代替。
4.重点引导学生用字母来代替。
引导学生说一说你是怎么写的?为什么这样写?
学生可能用n+ 30表示,n表示小红的年龄,n+30就表示爸爸的年龄;也有可能用a+30,用a代表小红的年龄,因为爸爸比小红大30岁,所以用a+30就是爸爸的年龄。(根据学生的回答板书代数式)
思考:大家都用一个含有字母的式子代替上面所有的算式,既简洁又方便。这些式子中的字母n、a……都表示什么?
(都表示小红的年龄。)(板书:小红的年龄)
追问:是不是只能用这些字母表示?还能用其他字母表示吗?
引导学生理解:可以用任意字母来表示小红的年龄。
质疑:这些字母可以表示哪些数呢?能表示200吗?
先让学生讨论,然后汇报:这里的字母能表示从1开始的自然数,但是不能表示太大的数,不能表示200,因为人不可能活到200岁。
引导学生小结:用字母表示数时,在特定的情况下,字母表示的数是有一定取值范围的,比如表示年龄时。
5.质疑:这些含有字母的式子都表示什么呢?
(表示爸爸的年龄,也表示小红比爸爸小30岁。)
归纳:含有字母的式子,不但可以表示数,还可以表示两个数量之间的关系。(多媒体出示)
6.提问:如果用a表示小红的年龄,当a=11时,爸爸的年龄是多少?
学生自主计算,汇报:a+30=11+30=41(岁)
当a=12时呢?学生汇报:a+30=12+30=42(岁)
(二)教学教材第53页例2。
1.引导:同学们想不想知道月球上到底有什么秘密呢?让我们一起来瞧瞧。
(出示教材第53页例2):观察情境图,说一说你知道哪些数学信息。
学生汇报:在月球上,人能举起物体的质量是地球上的6倍;在地球上我只能举起l5kg。
你们知道为什么人在月球上能举起的物体的质量是地球上的6倍吗?
拓展:是月亮的质量小的原因,月球引力是地球的六分之一。
2.探索:在地球上能举起l千克的物体,那么在月球上能举起多少千克?在地球上能举起2千克的物体、3千克的物体,在月球上能举起多少千克呢?
出示:教材第53页的表格。
通过刚才的列式,你能用含有字母的式子表示出入在月球上能举起的质量吗?
学生自主思考,集体交流。
引导学生把人在地球上能举起的质量用字母表示(以用x 表示为例):
人在月球上能举起的质量就是x×6千克。
3.简写乘号。
直接教学:x ×6,我们可以写成6x ,中间的乘号省略不用写。在省略乘号时,一般要把数字写在字母的前面。
想一想:式子中的字母可以表示哪些数?
引导学生小结:人能举起的质量是有限的,因此字母表示的数也是有一定范围的,不能过大。
4.(出示教材第53页情境图)图中小朋友在月球上能举起的质量是多少?
学生自主解答,集体交流:6x =6×15=90(千克)
三、巩固拓展
1.完成教材第53页“做一做”。先让学生说一说长方形纸条的面积公式:长×宽。引导:此题的宽是3cm,怎样用含有字母的式子表示长方形纸条的面积?
放手让学生自主完成,列式汇报:3x 。教师提示乘号简写的注意事项。
2.完成教材第55页“练习十二”第1题。
先让学生回忆厘米、千克用什么字母表示(厘米:cm;千克:kg),再自主完成。
四、课堂小结
这节课你学会了什么知识?有哪些收获?
引导总结:
1.含有字母的式子,不但可以用字母表示数,还可以表示一个结果以及两个数量之间的关系。在特殊情况下,字母的取值是有一定范围的。
2.在省略乘号时,一般要把数字写在字母前面。
作业:教材第55页练习十二第3、7、8题。
板书设计:
用字母表示数
表示数
表示两个数量之间的关系
乘法简写:省略乘号,数字在字母前面。
课题:第五单元:用字母表示运算定律和计算公式
教学内容:教材P54及练习十二第4、5、6、10题。
教学目标:
知识与技能:使学生在旧知识的基础上,进一步认识用字母 表示运算定律和计算公式。理解一个数的平方的 含义。
过程与方法:使学生能够用语言表达运算定律和字母公式, 能够将数字代入字母公式中进行计算,培养学生的抽 象概括能力。
情感、态度与价值观:向学生渗透字母表示运算定律和公式的简单美。
教学重点:能用字母表示运算定律和公式,并能根据字母公式求值。
教学难点:理解一个数的平方的含义。
教学方法:自主探索、合作交流、尝试学习法。
教学准备:多媒体。
教学过程
一、复习导入
1.引导学生回忆:我们已经学过哪些运算定律?并让学生分别用语言叙述一下对应的运算定律的具体内容。
2.通过学生的回答,教师进行整理:学过的运算定律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。
3.根据学生的回答出示如下表格:
加法交换律 | 两个数相加,交换加数的位置,它们的和不变。 |
加法结合律 | 三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。 |
乘法交换律 | 两个数相乘,交换因数的位置,它们的积不变。 |
乘法结合律 | 三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。 |
乘法分配律 | 两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 |
4.师引导思考:在叙述时有什么感受?
(比较麻烦,有时表达不清楚。)
结合学过的知识想一想怎样能变简单些?
学生会想到用字母表示数。
5.揭题:那么今天我们就来继续研究用字母表示数的相关知识。
二、互动新授
(一)教学用字母表示运算定律。
1.你能像上节课那样,用字母把这些运算定律表示出来吗?(出示运算定律表格)
为了教学统一,可以规定学生用字母a、b、c来表示数字。
先自主思考,再尝试表示。将答案写在教材第54页的表上。集体订正。
出示根据学生的回答完成的表格:
加法交换律 | a+b=b+a |
加法结合律 | (a+b)+c=a+(b+c) |
乘法交换律 | ab=ba |
乘法结合律 | (a×b)×c=a×(b×c) |
乘法分配律 | (a+b)×c=a×c+b×c |
2.引导学生自主学习乘号的简写。
先让学生自己看教材学习,再进行交流汇报。
明确:在含有字母的式子里,字母中间的乘号可以记作“· ”,也可以省略不写。如a×b=b×a,可以写成a·b=b·a或ab=ba。
3.引导观察比较:用文字叙述和用字母表示运算定律有什么不同?
先让学生自己说一说,再启发学生小结:用字母表示运算定律,一目了然,简明易记,也便于应用。
质疑:这里的a、b、c可以表示哪些数?
通过交流,引导学生明白:这三个字母可以分别表示我们学过的任何数。
(二)教学用字母表示计算公式。
1.出示正方形的形状,问:这是什么?(正方形)
让学生先说一说正方形的面积及周长的计算公式:面积=长×边长;周长=长×4。
引导:正方形的面积和周长也可以用字母表示,一般情况下,用S表示面积,用c表示周长,a表示边长。试着写一写用字母表示正方形的周长和面积计算公式。
让学生自己尝试写出用字母表示的公式,然后再翻书看课本是怎样表示的。
S= a2 C=4a
2.提问:你有什么疑问?(学生可能对平方的表示不理解)
明确:S=a·a可以写成a2,表示2个a相乘,读作“a的平方”,所以正方形的面积公式一般写成S= a2。
出示:32,b2,52,指名让学生读一读,并说出各表示什么意思。
(32读作3的平方,表示2个3相乘,等于9;b2读作b平方,表示2个b乘;52读作5的平方,表示2个5相乘,等于25。)
出示:边长6厘米的正方形,你能计算出这个正方形的面积和周长吗?
引导学生先说出用字母表示的计算公式,再计算:正方形面积的公式是S=a2,当a=6时,S=62=6×6=36(平方厘米)。
正方形周长的公式是C=4a,当a=6时,C=4×6=24(厘米)。
三、巩固拓展
1.完成教材第56页“练习十二”第4题。
先让学生分析信息,说一说“今天卖出多少个足球”怎么表示?(48+m)
再让学生独立计算第(2)、(3)小题,集体订正。
2.完成教材第56页“练习十二”第6题。
此题有两个容易迷惑学生的地方:a2、62及6×2、a×2。教师一定要引导学生正确区分“平方”与“2倍”:a2表示2个a相乘,即a×a;2a表示2个a相加,即a+a。
四、课堂小结
师:这节课你学会了什么知识?有哪些收获?
引导归纳:
1.用字母表示运算定律,简明易记、便于应用。
2.在含有字母的式子里,字母中间的乘号可以记作“· ”,也可以省略不写。
3.a2读作:a的平方,表示2个n相乘。
作业:教材第56~57页练习十二第5第10题。
板书设计:
用字母表示运算定律和计算公式
a×b=b×a,可以写成a·b=b·n或ab=ba。
a2读作:a的平方,表示2个a相乘。
课题:第三单元:简易方程—练习十二
教学内容:教材P55~57练习十二第2、9、11、12、13题。
教学目标:
知识与技能:
1.能熟练掌握用字母表示数的方法。
2.会利用公式、常用的数量关系求值。
过程与方法:经历用字母表示数和求值的练习过程,培养学生抽象概括的思维能力。
情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。
教学重点:能熟练地用字母表示数量关系、运算定律、计算公式。
教学难点:解决相关的实际问题。
教学方法:习题讲解,引导学生练习。在练习中体验、交流、感悟。
教学准备:多媒体。
教学过程
一、复习回顾
教师:我们已经学习了用字母表示数,那现在就来做做练习。
教师出示下列各题,学生独立思考后,交流解答。
1.填空。
(1)1千克大米的价格是a元,买20千克大米应付( )元。
(2)学校食堂上月用煤x 吨,这个月比上个月节约用煤y吨,这个月用煤( )吨。
(3)a+a=( ) a×a=( ) 当a=5时,2a=( ),a2=( ).
(4)汽车每小时行42千米,行了t小时,共行( )千米;如果行s千米要( )小时。
2.水果店购进一批水果,苹果有x箱,每箱重15千克,橘子共有a千克,说说下列式子表示的意义。
(1) 15x (2) 15x +a (3) 15x -a
二、指导练习
1.教材第57页练习十二第11题。
(1)学生读题后,教师提问:我们已经学习过的单价、数量和总价三者之间有怎样的关系?
学生在小组中议一议后,会说出:总价=单价×数量;单价=总价÷数量数量=总价÷单价
(2)你会用题中的字母表示出这些数量关系吗?
学生在教材上练习,教师指名板演:c=ax a=c-x x =c÷a
(3)如果每袋方便面1.5元,6元可以买几袋?
学生独立练习,教师指名板演:
x =c÷a=6÷1.5=4(教师注意强调书写格式)
集体订正,教师强调易错点。
2.教材第57页练习十二第13*题。
(1)教师出示图。
(2)该图由几个小长方形组成?分别说说它们的长和宽各是多少。
组织学生观察图,独立思考后在小组中交流。然后教师指名学生说一说。
学生可能会说出:左边长方形长是a,宽是c;右边长方形长是b,宽是c;整个长方形长是(a+b),宽是c。
(3)学生独立思考,小组交流讨论后,教师指名学生回答:
①哪一部分的面积是ac? (左边长方形的面积)
②哪一部分的面积是bc? (右边长方形的面积)
③整个图形的面积怎样计算?
方法一:(a+b)c 方法二:ac+bc
三、巩固练习
1.教材第55页练习十二第2题。
学生独立完成,教师指名学生回答。
2、教材第57页练习十二第9题。
教师指名学生板演,其余同学独立完成,然后集体订正,小组交流遇到的问题。
3、教材第57页练习十二第12题。
(1)小组合作交流讨论工作效率、工作时间和工作总量三者之间的关系。
(2)组织学生汇报,教师根据学生汇报使学生明确:工作总量=工作时间×工作效率。
(3)组织学生完成,全班集体订正。
4教师出示:
a b c s 1 0 8 9
× 9 × 9
s c b a 9 8 0 1
教师:上面算式中,a、b、c、s各代表什么数呢?
组织学生小组讨论,合作交流。(答案见右面竖式)
四、课后小结
通过本节练习课,同学们还有什么疑问?
作业:
一、填一填。
1.小兵有故事书x 本,比张冬多5本,张冬有故事书( )本。
2.小红x 天读课外书a页,平均每天读( )页。
3.每个足球的价格是a元,买6个足球用( )元,付x 元钱可以买( )个足球。
二、说说下面每个式子的意义。
某工厂计划生产洗衣机n台,原计划6天完成,实际比原计划多生产120台。
1.a+120( )
2.a÷b( )
三、用含有字母的式子计算。
1.一个长方形的长a是8.4m,宽6是4m,求它的面积S。
2.一列火车的速度v是180千米/时,行驶的时间t是4.5小时,求行驶的路程s。
板书设计
练习十二
第11题:c=ax a=c-x x =c÷a
第13题:方法一:(a+b)c
方法二:ac+bc
课题: 第五单元:用字母表示数的应用(1) 第 4 课时 总序第 4 个教案
课型: 新授
教学内容:教材P58例4及练习十三第1、2、4、9第题。
教学目标:
知识与技能:
1.使学生认识用字母表示数的意义和作用,能用字母表示数。
2.使学生在具体情境中感受用字母表示数的必要性,向学生渗透符号化思想。
过程与方法:经历用字母表示数来解决实际问题的过程,掌握用字母表示数量关系的方法。
情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。
教学重点:能熟练地用字母表示简单数量关系,解决实际问题。
教学难点:理解应用题的意图和解题思路。
教学方法:设置数学问题,引导学生练习。在练习中体验、交流、感悟。
教学准备:多媒体。
教学过程
一、谈话引入
师:告诉同学们一个秘密,再过几天老师的生日就要到了。同学们,你们觉得老师有多大了?
学生发言,猜一猜老师的年龄。
师:你们已经猜了老师的年龄,现在,让我来猜猜大家的年龄吧。(11岁)老师告诉你一条重要的信息。(出示老师比同学大22岁)你们说我几岁了?你是怎样想的?(板书:学生的岁数:11岁 老师的岁数:11+22)
二、探究新知
(一)用含有字母的式子表示加减关系。
1.师:现在让我们进入时空隧道,回忆过去,展望未来。
想一想,当同学们1岁时,老师几岁?你是怎么知道的?
当同学们2岁时,老师几岁?你是怎么想的?
2.师:还可以说下去吗?想想当你几岁时,老师几岁,用一个算式表示。在纸上写写看。(一生板演)
3.师:感觉怎样?还能写出更多的算式吗?能把你写的算式跟同学们交流一下吗?
学生发言,说说自己的算式与感想。
师:看来,像这样的式子还能写很多。咦,那你能用一个式子就把同学们的岁数、老师的岁数和两个岁数之间的关系简单明了地表示出来吗?
4.学生先独立尝试,然后四人小组交流。
5.汇报、交流、评价。
师:这么多算式,你最欣赏哪一个?说说理由是什么。
6.优化。A A+22表示什么?还表示什么?
7.预设:B B+22 X X +22这三个式子有什么相同的地方?(A、B、X 都是表示不确定的数,A+22 B+22 X+22不仅表示老师的年龄,还表示老师比同学大22岁这个关系)
8.师:这些算式真的可以表示老师任何一年的年龄吗?让我们来试试。
9.想一想,当A=1时,表示同学几岁,老师几岁?
当A=33时,表示同学几岁,老师几岁?
10.师:这些算式既表示出了老师和学生岁数之间的关系,又表示出了老师的岁数。那么,当老师a岁时,同学们几岁?
11.师:用a表示自己的岁数,那么你最喜欢的人的岁数怎么表示?试试看。(解读一下自己写的式子)
(二)教学教材第58页例4。
1.出示教材第58页例4。
2.通过阅读例4可知:一共有果汁1200 g,倒了3小杯,每小杯的容量用xg表示,还剩下多少克?
一小杯的容量是x g,那3小杯的容量是3x g,还剩下多少克呢?
列出式子:1200-3x 。(学生齐答,教师板书)
3当x 等于200时,还剩下:1200-3×200= 600(克)。
4.x 最大可以是多少?
组织学生分小组进行讨论,得出结论后派出代表做课堂汇报。
已知总量是1200g,倒完3小杯后,还有剩余,那意味着1200 - 3x会大于O,得出结论x小于400。(板书)
5.想一想:式子中的字母可以表示哪些数?
学生思考,小组交流,指名学生回答。
6.提问:解决上面的例题需要注意什么?
要注意总量和已使用的量的关系,理解题目的意思,才能正确列出算式。
7.你还能根据题目的信息提出哪些问题?小组交流一下,收集问题并解答。
学生独立思考,并进行小组合作。
三、巩固练习
1.完成教材第58页“做一做”。
先让学生独立思考,并汇报结果,最后集体订正。
(1)120+lOa。
(2)把a=25代入120+lOa中,得120+10×25=370(kg)。所以当a=25时,商店一共有370kg苹果。
2.完成教材第58页“做一做”的第2题。
先由学生独立解决,再指名回答,最后集体订正。
(1) 96-12b。
(2)把b=5代入到96-12b中,得96-12×5=36(吨),所以当b等于5时,仓库里剩下的货物有3b吨。
(3)这里的b可以表示1,2,3,4,5,6,7,8。
3.完成教材第60页练习十三第1题
学生理解题意,再独立完成,并在小组中交流检查。
4.完成教材第61页练习十三第9题。
(1)指名学生读题,理解题意,引导学生区分“离开重庆有多远”和“到宜昌还有多元”。
(2)组织学生独立完成,全班集体订正。
四、课堂小结
通过这节课,你有什么新的收获。
作业:教材第60页练习十三第2、4题。
板书设计
用字母表示数的应用
学生的岁数:11岁 老师的岁数:11+22
1200-3x
1200- 3x 会大于O,得出结论x 小于400。
当x 等于200时,还剩下:1200-3×200= 600(克)。
课题: 第五单元:用字母表示数的应用(2) 第 5 课时 总序第 5 个教案
课型: 练习
教学内容:教材P59例5及练习十三第5、6、7、8第题。
教学目标:
知识与技能:1.在实际情境中理解用字母表示数的意义,会用含有字母的式子表示复杂数量关系。2.在探索数量关系的过程中,体会用字母表示数的优越性,感受数学的简洁美。3.渗透不完全归纳思想和代数思想,培养符号化意识,提高概括能力。
过程与方法:经历用字母表示数来解决生活中实际问题的过程,掌握用字母表示复杂数量关系的方法。
情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。
教学重点:理解用字母表示数的意义,会用含有字母的式子表示复杂数量关系。
教学难点:用字母表示应用题中的复杂数量关系。
教学方法:设置数学问题,引导学生练习。在练习中体验、交流、感悟。
教学准备:多媒体、小棒。
教学过程
一、游戏导入
抓小棒的游戏。
1.明确操作要求:同学们每次抓的小棒根数是老师抓的3倍。
2.教师分别抓1根、3根、7根小棒,学生抓出相应的根数。
在此基础上提问:怎样求出你应抓的根数?
3.教师抓一大把时,问:你和你的同桌一共抓几根呢?
当a=60时,你们小组的同学一共抓几根?当a等于200时呢?
二、探索新知
教材第59页例5。
1.摆三角形所用小棒的根数。
(1)教师:摆1个三角形需要几根小棒?摆2个、3个、4个呢?
指名学生回答:摆1个三角形需要3根小棒,摆2个需要6根,摆3个需要9根……
教师:你能发现什么规律?
小组讨论并派出代表发言。
引导学生得出所用的小棒的根数是摆的三角形个数的3倍。
(2)教师:假如摆x 个三角形,需要几根小捧?
学生:3x 根。
教师:x 表示什么?这儿的x可以是哪些数?
学生小组交流,教师指名汇报。
(3)教师:当x 等于6时,就是摆了几个三角形?需要几根小棒?当x 等于20时呢?
学生小组讨论交流。
2.摆正方形所用小棒的根数。
(1)教师:摆1个正方形需要几根小棒?摆2个、3个、4个呢?如果摆x个正方形需要几根小棒?这儿的x 表示什么?
指名学生回答:摆1个正方形需要4根小棒,摆2个需要8根,摆3个需要12根……
提问:你能发现什么规律?
小组讨论并派出代表发言。
引导学生得出所用的小棒的根数是摆的正方形个数的4倍。摆x个正方形需要4x 根小棒,这里的x 表示正方形的个数。
(2)教师出示另一个正方形,用x 表示边长,问:这时的x表示什么?分别用字母表示出正方形周长计算公式和面积计算公式。
指名学生汇报,根据学生汇报板书:
正方形的周长计算公式:C= 4x
正方形的面积计算公式:S=x ×X =X 2
经过举例让学生明白字母可以表示不同的数量,所表示的意义也不同。
3.摆正方形和三角形共用小棒的根数。
(1)教师:已知摆一个三角形所需的小棒是3根,摆一个正方形所需的是4根,那摆一个正方形和一个三角形需要多少根小棒?
学生齐答。
(2)教师:那摆2个、3个、4个呢?甚至x 个呢?
引导:摆x 个三角形和正方形的图形,所用小棒的根数应是摆x 个三角形和x 个正方形所用根数的和。
学生独立列式,指名口答。
教师板书:3x +4x =(3+4)x =7x
引导学生发现:这是运用了乘法分配律。
求x 等于8时,一共用了多少根小棒?
学生自主解题,汇报:当x =8时,7x =7×8=56(根),一共用了56根小棒。
4.教师归纳总结:同一个字母可以表示不同的数量,并且表示的意义不同。同一个字母表示相同的意义、相同的数量时,可运用乘法分配律进行运算。
三、巩固练习
1.完成教材第59页的“做一做”。
找两名学生板演,其他学生在稿纸上完成,然后集体订正。
(1)220x +120x = (220+120)x =340x (千米),所以经过z小时,动车和普通列车一共行了340千米。
(2)220x -120x =lOOx (千米),所以经过x小时,动车比普通列车多行了lOOx千米。
2.完成教材第61页练习十三第6题。
学生读题,理解题意,再独立练习,通过小组交流检验答案。
四、课后小结
通过这节课,你有什么新的收获?
作业:教材第61页练习十三第5、7、8题。
板书设计
用字母表示数的应用
正方形的周长计算公式:C= 4x 3x +4x =(3+4)x =7x
正方形的面积计算公式:S=x ×X =X 2 乘法分配律
课题: 第五单元: 练习十三 第 6 课时 总序第 6 个教案
课型: 练习
教学内容:教材P60~61练习练习十三第2、10、11题。
教学目标:
知识与技能:通过练习会熟练地用含有字母的式子表示数量及数量关系。能根据字母所取的值,求出含有字母的式子的值。
过程与方法:结合具体情境,经历用字母表示数和求值的练习过程,培养学生抽象概括的思维能力。
情感、态度与价值观:在练习活动中,体会生活中处处都有数学及数学知识的应用价值,培养学生解决实际问题的能力,增强学好数学的信心。
教学重点:掌握用含字母的式子表示数量关系;根据字母所取的值,求出含有字母的式子的值。
教学难点:理解用含有字母的式子表示数量及数量关系,培养学生抽象概括的思维能力。
教学方法:创设情境、合作交流、应用与反思。
教学准备:多媒体、练习纸。
教学过程
一、基础练习
1.我能填:
(1)7·a·6=□·(□·□) 2x +6x =(□+□)·x
(2)a+a=( ) a×a=( ) 当a=5时,2a=( ),a2=( )
(3)一个长方形,长a米,宽b米,面积S=( ),周长C=( )
2.我会选:水果店购进一批水果,皇帝柑有x箱,每箱重10千克,香蕉共有6千克。说出下列式子表示的意义:
(l)lOx (2)10x +b (3)lOx -b
3.小结并板书课题。
二、综合训练
1.创设情境:现在我们就一起坐车去游玩吧。
汽车每小时行60 km,行了t小时,一共行了( )千米。
提问并用字母表示出公式。
2.第一站:
A.购买门票。
(1)提问:在付款前先要知道哪些条件?(单价a、数量x)
付款的钱叫什么?(总价c)
你能用文字说一说这三个数量之间有什么关系吗?再用字母表示出来。
(2)从这里选一个公式来解决下面的问题:
如果每张门票55元,220元可以买几张票?
B.过关明理:(理解式子表示的意义)
(1)百万葵园一张儿童票是b元,成人票比儿童票贵15元。b+15表示什么?(成人票的价格)
(2)我班共有48名师生购票进园,教师有(48 -c)名,这里的c表示什么?
(学生的人数)
(3)师生们排队进园,平均分成了x 组,每组12人。12x 表示什么?
(进园的总人数)
C葵花精灵考考你:(同式异义)
我们栽种了20棵葵花,平均栽成了a行,每行栽(20÷a)棵。
一袋葵花种子a元,20元可以买(20÷a)袋。
学生填空,再用自己的话说一说上面式子表示的含义。
小结:相同的字母或相同的含有字母的式子,在不同的题目中所表示的意义不一样。
即时练习:教材第60页练习十三第3题。
像这样用你自己的话说一说下面式子的含义。
20+a 20-a 20a
3.第二站:
甲导游:我每天接待游客a人。乙导游:我每天接待游客b人。
(1)他们每天共接待游客 人,30天共接待游客 人。
(2)当a=580,b=620时,用第(1)题中的式子计算他们30天的总接待人数。
学生先独立完成,然后小组交流、汇报。
4.第三站:
(l)一本亚运宣传册有a页,小华每天看8页,看了6天。用式子表示还没看的页数。
(2)这本书如果有94页,张华看了7天。用上面的式子求还没看的页数。
小结:根据题意和字母所取的值,可以求出含有字母的式子的值。
5.第四站:
请同学们一起观察此表:说一说什么是工作效率、工作时间和工作总量。
(1)请同学们完成此表:(见板书)
(2)机器包装的速度更快,一台机器每分钟包装水果50盒,请你利用表中的公式计算一台机器1小时包装多少盒。
交流、汇报。
三、拓展提高
1.依次出现以下正方形。(教材第61页第10题)
课题: 第五单元:简易方程—方程的意义
教学内容:教材P62~63及练习十四第1、2、3题。
教学目标:
知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。
过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。
情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。
教学重点:理解和掌握方程的意义。
教学难点:弄清方程和等式的异同。
教学方法:观察、分析、分类、抽象、概括和交流
教学准备:多媒体,天平。
教学过程
一、情境导入
1.创设情境:同学们,你们听过《曹冲称象》的故事吗?
教师简单介绍《曹冲称象的故事》
2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?
(让大象和石头的重量相等,再称石头的重量。)
3.是的。那么你们知道吗,在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。
二、互动新授
1.出示天平:
让学生说一说对天平有哪些了解?
让学生自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。
教师做补充:天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。
2.合作探究。
(1)在天平的右边放一个1009的砝码,怎样才能让天平平衡呢?
让学生自主思考、交流操作,得出:在天平的左边放2个509的砝码就可以保持平衡。
用算式表示:50+50=100。
让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)
(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。
引导学生通过观察发现:现在天平平衡,说明空杯子重100g。
质疑:如果我往杯子里倒些水,观察天平现在的情况。
(在空杯里加一杯水后天平不平衡了。)
一杯水的重量是多少,怎样表示?
引导学生思考:你们知道一杯水有多重吗?(不知道)
如果要你现在表示这杯水有多重,你有办法吗?
学生思考,小组讨论得出:一杯水的重量一水的重量十杯子的重量。
追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?
学生汇报:lOO+x (师板书)
(3)再次让学生观察现在的天平(天平右边放10g砝码),发现了什么?
(天平两边不平衡)
哪边重一些呢?你们能用数学算式来表示吗?
学生回答:lOO+x >100。
怎样让天平两边平衡呢?(加砝码)
教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况。
学生分组讨论,教师巡视指导
汇报时引导学生用式子表示:lOO+x >200 lOO+x <300。
并引导学生说明这杯水的重量大于200g,小于300g。
让学生继续操作,怎样才能使天平平衡呢?
引导学生把右边的砝码换成2509,使天平左右两边平衡。这说明了什么?
(一杯水的重量等于250g)
(4)你们能用数学算式来表示这天平的状况吗?
学生自主思考,再全班交流汇报:lOO+x =250(师板书)
引导学生观察比较这三个算式有什么不同?
lOO+x >200 lOO+x <300 lOO+x =250
小结:前面两个算式两边不相等,后面一个算式两边是相等的。
师引导:像这样两边相等的算式我们把它叫做等式。(板书:等式)
(5)让学生比较50+50=100与lOO+x =250两个等式,有什么不同?
学生自主思考,并交流得出:第一个等式没有未知数x ,第二个等式含有未知数x 。
教师小结:像lOO+x =250这样的含有未知数的等式,称为方程。(板书:方程)
(6)引导学生思考:是不是所有的等式都是方程?(不是。)
那么,方程有哪些特点?
归纳小结:方程的特点:是一个等式,且含有未知数。
三、巩固拓展
1.让学生仿照课本情境图,自己试着写一些方程。
注意指导学生:方程一定是等式,并含有未知数。
2.完成教材第63页“做一做”第1题。
先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。
3.完成教材第63页“做一做”第2题。先说一说图意,再写方程表示数量关系。
如:第一幅图天平的左边有两个重量是x g的球,右边是一个重50g的砝码,也就是两个x g的球的重量是50g,列方法表示为2x =50。第二幅图是一条线段分成了两部分,一部分是x ,一部分是73,这两部分总数是166,即x +73=166。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:1.像lOO+x =250这样含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。
3.方程一定是等式,等式不一定全都是方程。
作业:教材第66页练习十四第1、2、3题。
板书设计:
方程的意义
不平衡 平衡
lOO+x >200 lOO+x =250
lOO+x <300
像lOO+x =250这样的含有未知数的等式叫做方程。
课题: 第五单元:简易方程—等式的性质 第 2 课时 总序第 8 个教案
课型: 新授
教学内容:教材P64~65及练习十四第4、5题。
教学目标:
知识与技能:通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
过程与方法:利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
情感、态度与价值观:培养学生观察与概括、比较与分析的能力。
教学重点:掌握等式的基本性质。
教学难点:理解并掌握等式的性质,能根据具体情境列出相应的方程。
教学方法:启发式教学;自主探索、观察、归纳、合作学习新知。
教学准备:天平、茶壶、茶杯、墨水、铅笔盒。
教学过程
一、情境导入
1.上节课咱们认识了天平,知道天平的两边重量完全相同时,天平才能保持平衡;并利用天平学会了等式和方程的含义:等号两边完全相等的式子叫等式,含有未知数的等式就是方程。
2.同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
二、互动新授
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
让学生自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
引导学生小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是n克,1个茶杯的重量是b克,能用式子表示吗?
让学生尝试写出:a=2b(师板书)
引导学生思考:如果在天平的两边同时各放上一个茶杯,天平会发生什么变化呢?
先让学生猜一猜,学生可能会猜测出天平仍然平衡。再追问:为什么?
学生可能会说:因为两边加上的重量一样多。
教师先进行实际操作天平验证,让学生观察。再演示这一过程,并明确:两边仍然相等。
小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
让学生尝试用字母表示这个式子:a+b=2b+b(师板书)
提问:如果两边各放上2个茶杯,还保持平衡吗?两边各放同样的一把茶壶呢?
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2b a+a=2b+a
2.出示教材第64页图2的第一个天平图。
让学生观察现在的天平是什么样的?(平衡)
追问:如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?生尝试写出:a+b=4b
再问:如果把两边都拿掉1个花瓶,天平还平衡吗?先让学生猜一猜,再演示。
学生回答:平衡。让学生尝试用等式表示:a+b-b=4b-b
从图上你能知道什么?(出示教材第64页图2第二个天平图)
(1个花盆和3个花瓶同样重。)
3.通过这几个实验,你发现了什么?
引导小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。天平的两边同时加上或减去同样的数量,天平仍然平衡。
你能用一句话来表示你的发现吗?
引导学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4.引导学生通过假设具体的数进行比较验证。如:假设一个花瓶1千克,那么4个花瓶共4千克;一个花盆3千克,再加一个花瓶也是4千克。把两边同时减去一个花瓶也就是减去1千克,那么两边都剩下3千克。
5.猜猜:除了这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
让学生猜测。这里对学生可能有些难度,有些学生的猜测脱离不了等式的性质1。
如:学生猜测天平的两边同时放2个、3个杯子;同时减去一把茶壶等。这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
6.出示教材第65页图1的第一个天平图,让学生观察并说明。
(一瓶墨水的重量=一盒铅笔盒的重量)
引导学生用a表示墨水的重量,用6表示铅笔盒的重量,写出等式:a=b。
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
学生猜测后,教师进行实际天平操作,验证学生的猜测。
多媒体演示变化过程,并引导学生用等式表示:2a=2b。
如果把天平的两边物品的数量分别扩大到原来的3倍、4倍呢?(仍然保持平衡)
7.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
(2个排球的质量=6个皮球的质量)
引导学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
学生猜测:平衡。
教师演示,并引导学生用等式a=3b表示。
8.通过刚才的试验,你发现了什么?
发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
你能用一句话总结一下等式的这个性质吗?
归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
9.为什么等式两边不能除以O?学生交流,汇报:O不能做除数。
三、巩固拓展
利用等式的性质填空
1.如果2x -5=9,那么2x =9+( )
2.如果5=10+x ,那么5x -( )=10
3.如果3x =7,那么6x =( )
4.如果5x =15,那么x =( )
先让学生回忆等式的性质,再自主完成填空。
四、课堂小结
这节课你学会了什么知识?有哪些收获?(引导总结等式的性质)
作业:教材第66页练习十四第4、5题。
板书设计: 等式的性质
a=2b a+b=2b+b a=b 2a=2b
a+b=4b a+b-b=4b-b 2a=6b a=3b
等式两边加上或减去同一个数,左右两边仍然相等。
等式两边乘同一个数,或除以同一个不为O的数,左右两边仍然相等。
课题: 第五单元:简易方程—解方程(1) 第 3 课时 总序第 9 个教案
课型: 新授
教学内容:教材P67~68例1、例2、例3及练习十五第1、2、7题。
教学目标:
知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
过程与方法:利用等式的性质解简易方程。
情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。
教学重点:理解“方程的解”和“解方程”之间的联系和区别。
教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。
教学方法:创设情境;观察、猜想、验证.
教学准备:多媒体。
教学过程
一、情境导入
谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)
教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?
引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x +3=9(教师板书)
二、互动新授
1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。
学生思考、交流,并尝试说一说自己的想法。
2.教师通过天平帮助学生理解。
出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?
(右边也要拿掉3个球。)
追问:怎样用算式表示?学生交流,汇报:x +3-3=9-3
x=6
质疑:为什么两边都要减3呢?你是根据什么来求的?
(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)
你们的想法对吗?出示第3个天平图,证实学生的想法是对的。
3.师小结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)
4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。
师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。
5.验算:x =6是不是正确答案呢?我们怎么来检验一下?
引导学生自主思考,并在小组内交流自己的想法。
通过学生的回答小结:可以把x=6的值代入方程的左边算一算,看看是不是等于方程的右边。
即:方程左边=x +3
=6+8
=9
=方程右边
让学生尝试验算,并注意指导书写。
6.出示教材第68页例2情境图。
让学生观察图,理解图意并用等式表示出来:3x =18
引导学生:通过刚才解方程的经验尝试解决这个题。
学生自主尝试解决,教师巡视指导。
汇报解题过程:等式的两边同时除以3,解得x =6。
根据学生的回答,师板书:3x =18
3x ÷3=18÷3
x =6
质疑:你是根据什么来解答的?
引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。
让学生尝试检验计算结果是否正确。
7.出示教材第68页例3,并让学生尝试解答。
由于此题是“a-x ”类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上“x ”,但x 在等号的右边,不会继续做了。
教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上“x ”。
通过计算让学生发现,等号左边只剩下“20”,而右边是“9+x ”。
继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:
20-x =9 请学生自主尝试检验:方程左边=20-x
20-x +x =9+x =20-11
20=9+x =9
9+x =20 =方程右边
9+x -9=20-9
x =ll
8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。
小结:根据等式的性质来解方程,解方程时要先写“解”,等号要对齐,解出结果后要检验。
三、巩固拓展
1.完成教材第67页“做一做”第1、2题。
2.完成教材第68页“做一做”第1、2题。学生自主计算解答,并集体订正答案。
四、课堂小结。师:这节课你学会了什么知识?有哪些收获?
引导总结:1.解方程时是根据等式的性质来解。2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。
作业:教材第70~71页练习十五第1、2、7题。
板书设计:
解方程(1)
例1: 例2: 例3:
x -3=9 方程左边=x +3 3x =18 20 - x =9
x +3-3=9-3 =6+3 3x ÷3=18÷3 20- x + x =9+x
x =6 =9 x=6 20=9+x
=方程右边 9+x =20
所以,x =6是方程的解 9+x -9=20-9
x =ll
使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。