查看原文
其他

【精彩论文】基于DDPG的风电场动态参数智能校核知识学习模型

中国电力 中国电力 2023-12-18






观点凝练





摘要:随着风电渗透率的增加,电力电子化元件大量接入,风电场表现出的动态特性愈发复杂,传统的基于少量案例、解析的仿真验证方法面临挑战。以深度强化学习为代表的新一代人工智能在多领域的成功应用,为风电场动态参数智能校核提供了借鉴。在双馈风电场等值模型的基础上,基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法提出了风电场动态参数智能校核知识学习模型。该模型通过大量的仿真探索并逐步得到风电场动态参数智能校正知识,实现了基于“知识”的风电场动态参数校核。最后,基于某地风电机组实测扰动数据,利用智能体习得的参数校核知识修正风电场动态行为主导参数,并与传统启发式算法进行对比,验证了所提模型的有效性。
结论:针对发电机参数的复杂模型,本文以深度强化学习的DDPG算法为依托,提出了一种发电机组参数调整的人工智能算法,所提方法精确度较高,适用于结构复杂的模型。智能算法是在试验的基础上积累经验。神经网络从初始化到训练完备需要一定的时间,对于硬件的计算力的要求随着问题维度的升高而更加严格。因此,加快网络收敛速度、减少训练耗时、提高智能算法的运算效率是后续研究的主要方向。

引文信息

周庆锋, 王思淳, 李德鑫, 等. 基于DDPG的风电场动态参数智能校核知识学习模型[J]. 中国电力, 2022, 55(5): 32-38.ZHOU Qingfeng, WANG Sichun, LI Dexin, et al. A knowledge learning model for intelligent check of wind farm dynamic parameters based on DDPG[J]. Electric Power, 2022, 55(5): 32-38.






 往期回顾 


《中国电力》2022年第5期目录
【精彩论文】关键技术发展对配电网自然垄断属性的影响
【精彩论文】基于极点配置的新能源并网附加阻尼控制策略
【精彩论文】雾霾条件下光伏发电量预测的迭代优化与经济性分析
【精彩论文】近30年全球大停电事故发生的深层次原因分析及启示
【新能源专题征稿】“海上风电送出与并网技术”专题征稿启事
【征稿启事】“新能源基地经直流送出系统稳定性分析与控制技术”专题征稿启事
【征稿启事】“面向数字配电网的边缘计算与控制技术”专题征稿启事
【征稿启事】“新型电力系统储能关键技术应用”专题征稿启事

编辑:杨彪
校对:蒋东方

审核:方彤

声明

根据国家版权局最新规定,纸媒、网站、微博、微信公众号转载、摘编《中国电力》编辑部的作品,转载时要包含本微信号名称、二维码等关键信息,在文首注明《中国电力》原创。个人请按本微信原文转发、分享。欢迎大家转载分享。

继续滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存