【精彩论文】蒙西地区储能技术经济性优化配置研究
蒙西地区储能技术经济性优化配置研究
窦东1, 王雁宇1, 李欣1, 杨文生1, 周文奇1, 李海清1, 张士营2
(1. 内蒙古电力经济技术研究院,内蒙古 呼和浩特 010040; 2. 华能新能源股份有限公司,北京 100036)
引文信息
窦东, 王雁宇, 李欣, 等. 蒙西地区储能技术经济性优化配置研究[J]. 中国电力, 2022, 55(8): 52-63.
DOU Dong, WANG Yanyu, LI Xin, et al. Techno-economically optimal configuration of energy storage for western inner mongolia[J]. Electric Power, 2022, 55(8): 52-63.
综上,本文提出针对蒙西地区的储能技术经济性优化配置模型,以降低风-光出力波动性和最大化储能系统的综合经济价值为目标,为蒙西地区的储能的选型、选址和容量配置提供规划建议。首先,基于蒙西地区的实际情况以及不同类型储能应用场景,提出针对蒙西地区的储能选型选址方案。其次,以最小化风光出力波动性和最大化储能的综合价值(内部价值和外部价值)为目标,构建储能技术经济性优化配置模型,并针对该模型提出基于NSGA-II的求解算法。然后,以蒙西地区某风光接入点为例,计算满足多目标条件下的储能配置方案,以不同的风光占比和储能的电池成本为影响因素,对该模型进行了灵敏度分析。最后,基于上述算例分析,提出了针对蒙西地区的储能经济性配置决策指导方案。
对储能的配置位置进行合理规划是降低储能系统投资、提高运行效益以及提升整个系统运行稳定性和资源利用效率的重要手段。文献[24]提出了针对新能源侧储能选址优化的通用性结论:在电力系统中的重要传输节点和可再生能源的发电接入点配置储能可以在兼顾经济性和系统稳定性的因素下达到储能选址配置的最优。因此,本文采用上述结论进行蒙西地区储能选址分析。以《内蒙古电网2021年度运行方式》提供的相关资料为参考依据,蒙西地区的风电、光伏资源主要集中在乌兰察布、包头、巴彦淖尔以及锡林浩特地区,分别占蒙西地区新能源装机容量的23.32%、21.63%、17.86%和15.62%。这些地区的重要传输结点以察右中、百灵、巴中、塔拉等500 kV变电站为主。在兼顾系统稳定性及经济性因素下,重点在上述4个地区的新能源接入点和重要传输节点进行储能配置,具体选址如表1所示。其中,新能源接入点主要为220 kV变电站,重要传输节点为500 kV变电站,部分重要传输节点亦是新能源接入点,不再重复列出。
表1 蒙西地区储能配置选址
Table 1 Site selection for energy storage configuration in western Inner Mongolia
1.2 蒙西地区储能选型研究
文献[24]从技术、经济、效率、环境4个维度建立了适应各种场景的储能选型指标体系,通过贝叶斯最优最劣法确定了不同场景下的指标权重,并通过模糊前景理论对储能在各种场景下的选型进行了综合评价,进而得出了储能在各类应用场景的排序,如表2所示。该选型排序研究并未涉及与地区相关的因素,具有一定的通用性,因此本文采用该选型排序结论确定蒙西地区储能类型。
表2 各类应用场景下储能选型排序
Table 2 Type selection and sorting for energy storage in various application scenarios
本文主要针对储能降低新能源出力波动性的应用场景进行分析,该应用场景属于辅助服务的应用场景范畴,由表2可知,在蒙西地区配置储能以实现平抑新能源出力波动性的最优储能选择为锂离子储能。本文后续研究中,若无特殊指出,涉及的储能均为锂离子电池储能。
本文以储能降低风光出力波动性为技术目标,以提升储能系统的综合利润(投资净现值)为经济目标,考虑储能系统的各类约束,实现对储能系统的容量、功率的最优化配置。
2.1 目标函数
2.1.1 技术目标本文设定蒙西地区配置储能的主要技术目标为降低可再生能源的出力波动性。采用文献[25]对于风电出力波动性的统计定义,使用风-光-储联合出力的标准差表示可再生能源联合储能的出力波动性。其中,风-光联合出力标准差 σPG和风-光-储联合出力标准差 σPGS 分别为(2)储能收益。储能的收益测算主要包括自身价值测算和外部价值测算。其收益构成如图1所示。
图1 储能的收益构成
Fig.1 Revenue structure of energy storage
储能的自身价值收益分为运行效益、辅助服务效益以及期末回收残值。储能的运行效益主要指储能系统利用电价差进行低储高发所获取的收益,即
储能技术经济性优化模型为多目标优化问题,基于加权法和目标规划算法的传统数学优化方法带有一定的主观性,无法有效求得多目标算法的帕累托最优解集合。NSGA-Ⅱ是目前求解大规模多目标优化模型的有效算法,具有计算速度快、求解精度高、解集收敛性好、可求得帕累托最优解集等特点[27]。基于此,本文采用NSGA-Ⅱ算法对储能技术经济性优化模型进行求解,算法流程图如图2所示。
图2 模型求解流程
Fig.2 Flowchart of model solving
该地区的新能源由装机容量为10 MW的风电站和2.5 MW的光伏发电站构成,能统一接入节点A。以季节变化为周期,该地区风、光的典型日出力曲线如图3所示。根据国家《国家发展改革委关于2021年新能源上网电价政策有关事项的通知》,蒙西地区风电、光伏的上网电价为0.278 5元/(kW·h)。
图3 风电及光伏典型日出力曲线
Fig.3 Typical daily output curves of wind power and PV
基于该地区的实际特点,拟在节点A处配置锂离子储能系统,主要为新能源发电端提供辅助服务,因此该储能系统对于发电端的影响为内部价值,对于电网、用户及环境的影响为外部价值。该储能系统寿命为10年,容量衰减系数定为常数1,期末回收残值率为10%。储能的成本及效益计算采用净年值计算方式,贴现率为8%。根据《华北电力调峰辅助服务市场运营规则》,储能系统提供辅助服务的成本为0.4元/(kW·h)。储能系统的其他参数设置如表3所示。
表3 储能系统参数设置
Table 3 Parameter setting for energy storage system
经过优化计算,可得到一系列不同风-光波动抑制率下的储能系统功率及容量配置的帕累托最优解集。抑制10 MW风电与2.5 MW光伏联合出力波动性的储能功率与容量配置方案如表4所示。
表4 不同风光出力波动抑制率下储能系统配置方案
Table 4 Configuration scheme for energy storage system under different σp
该地区风-光联合出力曲线可分为峰段(00:00—02:00、09:00—13:00、20:00—22:00)和谷段(03:00—05:00、15:00—19:00、23:00—24:00),为了满足不同风光波动抑制率要求,储能系统在满足经济运行最优的情况下,多次进行充放电操作。帕累托解集得出的不同风光出力波动抑制率下风-光、风-光-储以及储能的出力计划对比情况如图4所示。
图4 不同σp下风-光-储联合出力情况
Fig.4 Wind power-PV-storage joint output under different σp
在不考虑储能外部价值的情况下,该储能项目投资经济性分析结果如表5所示。为了更加全面地反映经济性评价结果,表中加入投资回收期与内部收益率的测算分析。随着风光出力波动抑制率的逐渐提高,储能的净现值、内部收益率逐渐下降,投资回收期逐渐提高,投资经济性呈下降趋势。当 σp 大于30%时,储能系统的投资将不具有经济性,在规定寿命周期内无法回收成本。
表5 不考虑外部价值的投资经济性分析结果
Table 5 Result of investment economy analysis without considering external value
表6 考虑外部价值的投资经济性分析结果
Table 6 Result of investment economy analysis considering external value
投资成本是储能规划设计的一项重要经济性指标,基于技术、经济性优化结果可得到储能系统投资成本与风-光-储联合出力标准差之间的帕累托曲线,如图5所示。随着风光出力波动抑制率的不断提高,储能的初始投资成本不断提高,且提高速率逐渐增加。风光出力波动抑制率从5%提升到35%,储能的初始投资成本仅增加658.61万,而从35%提升到60%,储能的初始投资成本增加1 213.02万元,为满足更高的风光出力的技术性要求需要投入的储能成本将显著提升。
图5 储能投资成本与风-光-储联合出力标准差帕累托曲线
Fig.5 Pareto curve of energy storage investment cost and standard deviation of wind power-PV-storage joint output
以10 MW的风电装机为标准,光伏装机容量占风电装机容量占比变化从0到1.5,风光出力波动性抑制率从10%增长到40%情况下,储能系统的配置情况如表7所示。
表7 不同风光比例下储能配置方案
Table 7 Energy storage configuration scheme under different ratios of PV installed capacity to wind power installed capacity
为了更直观地表示不同风光装机比例对于储能配置的影响,基于表7绘制不同光伏风电装机容量比例下储能配置需求图,如图6所示。
图6 不同风光比例下储能配置需求
Fig.6 Energy storage configuration requirements under different ratios of PV installed capacity to wind power installed capacity
以风光出力波动抑制率为40%的情况说明储能成本变化对于经济性分析指标及技术指标的影响情况,具体结果如表8所示。其中,成本系数表示储能现有成本与原有成本的比值。
表8 不同成本系数下储能投资经济性分析
Table 8 Economy analysis of energy storage investment under different cost coefficients
基于选型选址和案例分析结果,对蒙西地区进行整体优化,提出蒙西地区储能配置的规划方案。该储能配置方案的技术目标为将风光出力波动率降低30%,经济目标为实现储能的利润最大化。为了反映储能成本变化对于储能整体投资的影响,基于不同储能成本设置2个储能成本场景。情景1:储能单位容量成本为1.4元/MW·h,单位功率成本为0.35元/MW;情景2:储能单位容量成本为1元/MW·h,单位功率成本为0.35元/MW。其他参数设置与案例参数设置保持一致。不同成本场景下蒙西地区的储能配置计划如表9所示,储能配置的地址选择如图7所示。
表9 不同成本场景下蒙西地区的储能配置计划
Table 9 Energy storage configuration plan for western Inner Mongolia in different cost scenarios
根据《内蒙古自治区关于加快推动新型储能发展的实施意见》,配建储能规模原则上不低于新能源项目装机量的15%,本文储能配置方案中,各地区的储能配置容量均符合该政策要求。现有可再生能源装机水平下,实现降低风光出力波动性的技术要求,蒙西地区需要在情景1下投入96.95亿元建设电化学储能,而在情景2下投入71.71亿元建设电化学储能。以情景1为例,包头地区储能投资需求最高,达到31.05亿元,锡林浩特地区的储能投资需求最低,为15.43亿元。
作者介绍
窦东(1994—),男,通信作者,硕士,助理咨询工程师,从事电力技术经济、电力市场、电力需求侧管理研究,E-mail:1105965831@qq.com;★
王雁宇(1989—),男,硕士,中级咨询工程师,从事电力经济、投资评价研究,E-mail:516052727@qq.com.
往期回顾
根据国家版权局最新规定,纸媒、网站、微博、微信公众号转载、摘编《中国电力》编辑部的作品,转载时要包含本微信号名称、二维码等关键信息,在文首注明《中国电力》原创。个人请按本微信原文转发、分享。欢迎大家转载分享。