吕坚院士团队《Adv Sci》: 新型纳米结构,同时提升镁合金强度塑性!
The following article is from 材料科学与工程 Author 材料科学与工程
点击蓝字关注我们
镁合金由于高强度低密度的特点,在航空航天,汽车自动化,生物医用合金等领域具有广泛应用前景。吕坚院士团队在先前工作中发现非晶包裹纳米晶的超纳双相镁合金可实现近理论强度(Nature 545, 80-83 (2017))。
基于此,研究人员设计出全新多级结构镁合金:首先使用表面机械研磨处理(SMAT)镁合金表面得到梯度纳米晶,再通过磁控溅射在合金表面沉积Mg基双相金属玻璃薄膜。这一设计理念结合双相金属玻璃与梯度纳米结构的优势,成功在合金强度提升31%的基础上维持良好的拉伸塑性(20%)。合金的优异塑性变形能力由双相金属玻璃的多重剪切带变形及纳米晶化,双相金属玻璃阻挡SMAT纳米晶层裂纹延伸,以及SMAT纳米晶层在变形时晶粒长大协同提供。
表面机械研磨处理(SMAT)通过在合金中引入梯度纳米结构可以有效提升合金强度。然而,之前研究表明SMAT镁合金表面的纳米晶层在塑性变形时发生脆性断裂,严重降低合金变形能力。本研究通过磁控溅射沉积13 µm 厚Mg-Zn-Ca双相金属玻璃(NDP-MG)在SMAT Mg合金表面,阻挡纳米晶层裂纹延伸,启动纳米晶层晶粒长大机制,同时实现高强度与高延伸率。
图1. Mg-Zn-Ca双相金属玻璃(NDP-MG)的结构与成分。a) 原子探针层析技术(APT)三维重构图,显示螺旋柱状结构,其中Ca在界面处富集(由7at.%的Ca等浓度面显示)。b) 从图(a)中截取的5-nm厚俯视薄片图,展示富Ca区形貌。c) 与图(b)对应2D Ca浓度分布图。d) 俯视TEM界面图,展示~5-nm 厚的富Ca区(亮区)位于贫Ca区(暗区)界面处。e) 使用7at.% Ca 等浓度面计算出的1D成分图,定量的展示了富Ca非晶相与贫Ca非晶相的成分。
图2.纳米梯度SMAT镁合金的结构与机械性能。a) 典型明场透射电镜(TEM)照片展示纳米晶层结构。取样位置:距离SMAT表面20 μm。插图为TEM样品的选区电子衍射(SAED)花样。SAED花样上的圆环特征显示纳米晶具有较弱的晶体织构。b) 高分辨透射电镜(HRTEM)图片显示纳米晶的晶格结构,带轴:[2 -1 -1 0]。插图是图(b)对应的快速傅里叶变换(FFT)图。c)
图3.双相金属玻璃+SMAT(NDP-MG coated SMAT-H′)镁合金室温力学性能。真实应力-应变曲线:黑色,未处理(base)镁合金;深黄色,SMAT-L镁合金;蓝色,SMAT-H镁合金;红色, NDP-MG coated SMAT-H′镁合金。插图分别为SMAT-H以及NDP-MG coated SMAT-H′镁合金在6%真实应变下的横截面SEM图,展示NDP-MG成功阻挡裂纹延伸。
图4. NDP-MG变形前(a)与拉伸6%形变后(b)SEM形貌,显示NDP-MG界面处产生多剪切带。(c)TEM横截面观察NDP-MG depositedSMAT-H’合金在20%真实应变后结构演变。可以看到纳米晶层出现晶粒长大并可以观察到位错,双相金属玻璃NDP-MG出现初生剪切带。(d)HRTEM观察到NDP-MG在变形过程中发生纳米晶化,插图为相应的SAED图。
论文链接:
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202001480
相关资讯:
中科院化学所王铁研究员课题组Adv. Mater.:自组装结构增强纳米材料的机械和摩擦学性能
北化大刘惠玉/301医院刘凤永团队《Angew. Chem》:具有自产氧能力的MOF衍生纳米颗粒增强对肿瘤声动力治疗
加州大学河滨分校殷亚东教授课题组《Nat. Commun.》:基于磁/等离子基元杂化纳米棒的机械响应变色材料
免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:chen@chemshow.cn
扫描二维码
关注我们
微信号 : Chem-MSE
诚邀投稿
欢迎专家学者提供化学化工、材料科学与工程产学研方面的稿件至chen@chemshow.cn,并请注明详细联系信息。化学与材料科学®会及时选用推送。