上海技物所周靖&陈效双&陆卫研究员团队Carbon:在低维材料红外探测器件的非对称光耦合研究取得进展
点击蓝字关注我们
低维材料(如二维材料、纳米线等)凭借不同寻常的优异光电特性引起了广泛的研究兴趣,有望成为高性能探测器件的光敏材料。最常见的低维材料光电探测器件结构就是金属-低维材料-金属的结构。在低功耗、低暗电流的零偏压工作模式下,器件的光响应主要来源于低维材料与金属电极交界处的类肖特基结。当入射光局域地照射在低维材料与金属电极的交界处时,光伏、光热电等物理机制会诱导出宏观的光电流。金属-低维材料-金属的器件结构简单,不影响材料本身的优异特性,而且便于和不同的系统集成。但这种器件有两个主要瓶颈问题:1)在均匀的泛光照射下低维材料与两端金属的接触结产生大小相近、方向相反的光电流;两者互相抵消,使器件没有净的光响应。采用异种金属电极是一般的解决方案,但是制备异种金属电极通常需要额外的工艺步骤,增加了制备复杂性,以及低维材料被污染、损坏的可能性。2)二维材料、纳米线等低维材料尺度与光波长有较大差距,严重制约了光吸收效率,特别是低维材料与金属接触结的光吸收。利用微纳光子结构产生与低维探测材料交叠的亚波长局域强光场,从而提高低维材料与光的相互作用是一个有效的增强光吸收的途径,相关研究吸引了国际的关注。那么,是否能够利用微纳光子结构诱导金属-低维材料-金属结构中非对称的光耦合,增强一端光敏材料-金属接触结的光吸收,并抑制另一端光敏材料-金属接触结的光吸收,同时解决金属-低维材料-金属器件的两大瓶颈问题,而且不影响低维材料原有的光电特性,就具有重要的研究意义。
图1. (a)等离激元纳米谐振腔非对称集成的石墨烯红外探测器件示意图。(b)空间可分辨的光电测试示意图。(c)有光学天线集成的电极以及无光学天线的电极附近自驱动光响的波形图。(d,e)泛光照射下等离激元纳米谐振腔非对称集成的石墨烯红外探测器以及等离激元耦合光栅非对称集成的石墨烯红外探测器的示意图,以及两个器件的红外光响应率谱。
图2. (a)不同线宽的光学天线阵列的SEM照片。(b)由不同线宽的光学天线构成的等离激元纳米谐振腔诱导的石墨烯红外光响应谱。(c)10 kHz调制下1.55微米入射光激发的光响应波形。(d)30 kHz调制下1.55微米入射光激发的光响应波形。
这一研究提出了同时解决金属-低维材料-金属器件的零偏压工作模式两大瓶颈问题的新方法,能够有效推动低维材料光探测的发展。该工作以“Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities”为题发表在Carbon 170, 49 (2020)(DOI:)。博士生郭尚坤为第一作者。周靖和陈效双研究员为通讯作者。该研究工作得到了国家重点研发计划、国家自然科学基金项目、中国科学院率先行动“百人计划”项目以及上海市科委计划项目的支持。
原文链接:
https://doi.org/10.1016/j.carbon.2020.08.035
来源:中国科学院上海技术物理研究所
相关阅读
中科院金属所《Science》:发现二维层状MoSi2N4材料家族
东南大学王金兰课题组Adv. Mater.: 人工智能加速新型二维铁磁材料研发
中科院合肥研究院在二维材料1T-VSe2电荷密度波的理论研究方面取得新进展
免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:chen@chemshow.cn
扫描二维码
关注我们
微信号 : Chem-MSE
诚邀投稿
欢迎专家学者提供化学化工、材料科学与工程产学研方面的稿件至chen@chemshow.cn,并请注明详细联系信息。化学与材料科学®会及时选用推送。