陕西师范大学刘治科/刘生忠教授课题组Nano-Micro Letters:23%!阴阳离子同步钝化大幅提升钙钛矿电池性能
The following article is from nanomicroletters Author 纳微快报
点击蓝字关注我们
杂化钙钛矿材料具有合适的禁带宽度,高的光吸收系数以及长的载流子扩散长度等优点,其光电转换效率已经超过25.0%。然而,由于非化学计量比的表面成分以及钙钛矿中热稳定性较差的有机分子,使得杂化钙钛矿薄膜在晶界与界面处存在大量缺陷,形成非辐射复合中心,造成能量损失,限制器件效率进一步提升,同时影响器件长期稳定性。因此,寻找一种可以同步钝化钙钛矿中阴阳离子的添加剂对于制备高效稳定钙钛矿太阳电池至关重要。
A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23%
Wenjing Zhao, Jie Xu, Kun He, Yuan Cai, Yu Han, Shaomin Yang, Sheng Zhan, Dapeng Wang, Zhike Liu*, Shengzhong Liu*
Nano-Micro Letters (2021)13:169
本文亮点
1. 新型添加剂(苄胺)三氟化硼(BBF)可以延缓钙钛矿薄膜结晶速率,提高薄膜质量。
2. BBF含有路易斯酸(电子受体)和路易斯碱(电子供体)可同时与钙钛矿薄膜表面和晶界处的FA⁺、MA⁺、Pb²⁺阳离子和I⁻阴离子相互作用,有效地钝化和减少FA⁺、MA⁺空位和Pb相关缺陷,并阻止I⁻离子的迁移。
3. BBF修饰后的钙钛矿太阳电池光电转换效率达到23.24%,并表现出优异的空气、光和热稳定性。
内容简介
陕西师范大学刘治科&刘生忠教授课题组为解决FAMAPbI₃太阳电池面临的Voc损耗大,器件稳定性差,添加剂功能单一的问题,提出采用一种多功能新型添加剂(苄胺)三氟化硼(BBF)对钙钛矿进行改性掺杂。
研究表明在钙钛矿前驱体溶液中引入1.5 mg/ml的BBF后可带来四方面的积极作用:1) BBF的引入可延缓钙钛矿结晶速率从而显著改善薄膜结晶质量;2) BBF含有路易斯酸与路易斯碱官能团,实现钙钛矿晶界与表面中阴阳离子缺陷的同步钝化,并阻止I⁻离子的迁移;3) 钙钛矿表面梯度分布的BBF调整了钙钛矿表面的电子特性,优化了器件的能级匹配;4) BBF中的BF₃增加了钙钛矿薄膜的疏水性,提高器件的稳定性。最终钙钛矿太阳电池光电转换效率达到23.24%,迟滞效应减弱。
图文导读
I BBF对钙钛矿结晶过程的影响
图1. (a) 不添加或添加1.5 mg/mL BBF的钙钛矿前驱体薄膜在60°C/100°C退火温度下不同退火时间照片;(b) FAI与BBF前驱体薄膜变温红外光谱图;(c) PbI₂与BBF前驱体薄膜的变温红外光谱图。
利用X射线光电子能谱(XPS),FTIR,核磁共振(NMR)探究BBF与MAI和FAI相互作用。当BBF添加到MAI和FAI前驱体薄膜中,如图2a,b所示,N 1s轨道向高结合能方向移动,图2c, d中,N-H伸缩振动峰向低波数方向移动,图2e-h中¹H,¹⁹F,¹¹B均向高化学位移移动,表明F与MAI和FAI之间存在相互作用力形成氢键(N-H···F),BBF和FAI/MAI之间新形成的氢键可以减弱质子对屏蔽作用,导致共振向一个较低的磁场移动,对应较高的δ值。
图2. 未添加或添加BBF的MAI薄膜的(a) N 1sXPS能谱图和(c) FTIR光谱图;未添加或添加BBF的MAI溶液的(e) ¹H,(g) ¹⁹F,(i) ¹¹B NMR图谱;未添加或添加BBF的FAI薄膜的(b) N 1s XPS能谱图和(d) FTIR光谱图;未添加或添加BBF的FAI溶液的(f) ¹H,(h) ¹⁹F,(j) ¹¹B NMR图谱。
III BBF与MAI/FAI的相互作用
图3. 未添加或添加BBF的PbI₂薄膜(a) I 3d与Pb 4f XPS能谱图;(b) FTIR光谱图;(c) ¹H,¹⁹F,¹¹B NMR图谱。
图4. 具有不同浓度BBF添加剂的钙钛矿薄膜(a) 表面SEM图;(b) AFM图;(c) 粒径分布统计图;(d) 接触角。
IV BBF对钙钛矿膜的改性效果
为深入了解钙钛矿薄膜的质量和载流子动力学,包括BBF浓度对钙钛矿层到Spiro-OMeTAD光激发载流子传输行为的影响,测量了稳态荧光(PL)和时间分辨荧光(TRPL)。图5b与图5c展示了基于玻璃/钙钛矿结构的PL和TRPL图谱,如图所示,PL强度和TRPL寿命随着BBF浓度的增加而增加,并在1.5 mg/ml时达到最优,表明BBF的引入可以显著改善薄膜质量,有效抑制非辐射复合。图5d与图5e展示了基于玻璃/钙钛矿薄膜/空穴传输层结构的PL与TRPL图谱,结果表明BBF添加剂既能改善钙钛矿界面上的载流子转移,又能减少钙钛矿的非辐射复合,这与BBF的梯度分布可以调节钙钛矿表面能带结构有关。通过SCLC(图5h,图5i)估算了钙钛矿薄膜的缺陷态密度,添加BBF与未添加BBF的钙钛矿薄膜的缺陷态密度分别为5.87×10¹⁵ cm⁻³和8.67×10¹⁵ cm⁻³,缺陷态密度的降低表明BBF的引入可以有效钝化钙钛矿层的缺陷,减少载流子非辐射复合损失,有利于器件填充因子的提升。
图5. (a) PL测试结构示意图(玻璃/钙钛矿);(b) 钙钛矿薄膜稳态荧光光谱图;(c) 钙钛矿薄膜时间分辨荧光光谱图;(d) PL测试结构示意图(玻璃/钙钛矿/Spiro-OMeTAD);(e) 玻璃/钙钛矿/Spiro-OMeTAD稳态荧光光谱图;(f) 玻璃/钙钛矿/Spiro-OMeTAD时间分辨荧光光谱图;(g) 暗态I-V曲线测试结构示意图;(h) 未掺杂(i) 掺杂BBF添加剂器件暗态I-V曲线图。
V BBF添加剂对器件性能的影响
图6. (a) PSC器件结构示意图;用未添加或添加BBF的PSCs(b) 能级图;(c) J-V曲线;(d) 外量子效率图;(e) 最大功率点稳态输出图;(f) Mott-Schottky图;(g) 开路电压对光强依赖性;(h) 暗态I-V图;(i) 阻抗图。
VI BBF添加剂对器件稳定性的影响
图7. 未添加或添加BBF的钙钛矿器件(a) 空气稳定性;(b) 钙钛矿薄膜空气环境下老化2880 h的XRD谱图;(c) 钙钛矿器件的光照稳定性;(d) 钙钛矿器件的热稳定性;(e) 钙钛矿薄膜85℃老化100 h的XRD谱图。
原文链接
https://doi.org/10.1007/s40820-021-00688-2
相关进展
上海交大沈文忠教授团队《ACS AMI》:小分子界面钝化改善钙钛矿电池性能
免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:chen@chemshow.cn
扫二维码|关注我们
微信号 : Chem-MSE
欢迎专家学者提供化学化工、材料科学与工程产学研方面的稿件至chen@chemshow.cn,并请注明详细联系信息。化学与材料科学®会及时选用推送。