查看原文
其他

试题研究丨例谈函数最值(值域)的解题方法

品数学 2022-04-27

观察法(直接法)


配方法 


当函数的解析式中出现二次式的结构时,常用配方法求值域. 


换元法


图像法 


求基本初等函数(正、反比例函数,一次、二次函数)、分段函数的最值,画出函数图像,最高点的纵坐标是函数的最大值,最低点的纵坐标是函数的最小值.

单调性法


先判断函数的单调性,再利用其单调性求最值.常用到下面的结论:①如果函数y=f(x)在区间(a,b]上是增加的,在区间[b,c)上是减少的,则函数y=f(x)在x=b处有最大值f(b);②如果函数y=f(x)在区间(a,b]上是减少的,在区间[b,c)上是增加的,则函数y=f(x)在x=b处有最小值f(b).


分离常数法


注意到分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法求出值域.


目前100000+人已关注加入我们

       

       

推荐阅读

1.数学微信公众号大全,你需要的公众号都在这儿

2.教师必备丨数学免费资源网址大全

3.福利来了丨教师必备资料包免费领取

4.高中数学最全的思维导图

5.高考数学7条考场答题技巧

6.中学生学习数学的依赖心理及对策

7.用图表归纳的高中公式定理大全,值得收藏!

8.数学解题时的14个优先策略




(100多本

点击“阅读原文


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存