查看原文
其他

如何高效入门 PyTorch ?

王树义老师 玉树芝兰 2022-10-23

王树义

读完需要

15分钟

速读仅需5分钟

PyTorch 入门,坑着实不少。咱们来谈谈,如何选个合适的教程,避开它们。

1


   

选择

好几位读者,都留言问我:


王老师,我想学深度学习,到底是该学 Tensorflow ,还是 PyTorch?



没有水晶球,我也不知道谁会最终胜出。

从现状来看,PyTorch 的发展势头非常迅猛。在深度学习的顶会上,相关论文增速大幅超越 Tensorflow 。

Javaid Nabi 总结了一张最近两年 arxiv 机器学习论文中提及 PyTorch 的折线图,增长趋势一目了然。

在机器学习顶会 NeurIPS 2019 上,PyTorch 更是被单独拿出来讨论。

底下的听众,是这样的。

而另一边,Google 的 Tensorflow 2.X 版本,在 Reddit 上正被吐槽和围观。

如果你是个应用机器学习前沿技术的研究者,却还对 PyTorch 的存在熟视无睹,恐怕不是一个明智的选择。

你该依赖的,是深度学习研发领域的生态系统。具体的原理,我在《学 Python ,能提升你的竞争力吗?》和《数据科学入门后,该做什么?》两篇文章里,已经给你详细阐释过了。

简单来说,别人都用来沟通和协作的东西,你一窍不通,那就没法愉快参与协作了。深度嵌入到系统的协作能力,才是你赢得竞争的秘密武器。

例如,有人把 Google 的 BERT 从 Tensorflow 迁移到 PyTorch 后,就迅速开拓了一个评价高达 18.4K 颗星的项目。该项目受到学术界、工业界,乃至整个儿开发圈子的热情追捧。

为什么?

因为在 PyTorch 模型的基础上进行修改,非常方便,一切都是那么自然和透明。这吸引了许多研究者参与进来,一步一个脚印,利用别人做出来的东西,更进一步攀爬。

如果你做研究用到机器学习,需要站在前人的肩膀上,那 PyTorch 已经成为了你爬上别人肩膀的重要阶梯。

可当你信心满满,开始认真学习 PyTorch 时,多半会……

掉在前方的陷坑里。

想想看,为什么网上为初学者展示深度学习“多么简单”的文章,举的例子除了 Keras 就是 fast.ai ,而不是 PyTorch ?


因为 PyTorch 学起来,确实没有它们那样简便。

2


   

障碍

你要学习 PyTorch ,会遇到哪些问题?

太多了。

篇幅所限,咱们只讲其中最大的两个坑。

首先是面向对象(Object-Oriented Programming, OOP)。

PyTorch 的代码,当然也可以写成 Keras 那种序列化形式。

然而对于大部分的 PyTorch 用户的应用场景来说,写成那样,是没有什么意义的。

因为他们中的主体,是研究者。研究者不会满足于现有结果或者重复已知模型。他们要搭建自己的模型结构,尝试做自己的实验。

如果你要深度定制自己的模型架构,甚至对于一些细节作出精妙的修改(例如对不同模型层次,使用不同学习速率),那 PyTorch 写出来,就会像是这个样子。

看到 class 这样的陌生关键词,你可能会觉得有些发懵——用 Python 有段时间了,没见过这玩意儿啊。

Python 说简单很简单,因为它可以被当成脚本语言来使用。也就是用顺序、循环和判断组织起来,类似英文的操作说明。

然而,说复杂,它也可以变得非常复杂。因为它完全可以被当成面向对象语言来用。

许多标题里带着“入门”字样的 PyTorch 教材或者课程,往往会直接假设你已经掌握了面向对象编程的基础知识,一带而过。或者干脆告诉你,先去学习一下 OOP ,然后再回来继续学。

于是,你打开一本讲授面向对象编程的书,旋即被其中的“抽象”、“继承”、“封装”、“多态”等术语绕晕,轻松完成“从入门到放弃”。

其实,你根本用不着完全掌握 面向对象程序设计的各种要素,就可以学 PyTorch 。早有 William Falcon 等人把 PyTorch 的程序写法大卸八块,给了你模板。真正用的时候,你只需对着模板填空就好。

可是,一些必要的面向对象知识,还是得学。不然填空你都不知道该填的位置,容易张冠李戴。

说完了“面向对象”,咱们再说第二个坑,也就是“张量”(Tensor)。

PyTorch 让许多研究者用户大呼过瘾的奥秘,其实就在于“张量”。

因为高阶 API,例如 Keras, 甚至是 fast.ai ,都对张量进行了重度包裹。

用户不需要理解什么是张量,也可以做图片分类,也可以分析文本的情感。

但是,PyTorch 不想惯你这种毛病。

想用它来搭建神经网络?你就必须直面张量。

你必须能够说清楚每一层输入和输出张量的样子。你必须知道怎么把你的原始数据,转换成这种样子。

这种负担,看似会惹恼或者吓走用户。然而我们看问题不能只看一面。它的好处在于,代码书写规则,一下子变得简洁和一致。

因为你早已一杆子到底,知道在 PyTorch 深度学习模型构建中,最本质的操作究竟是什么。你不需要别人每次都为你提供高层 API 包裹的拐棍。

你可以随时知道怎么完成各种操作。例如怎样修改设置细节。遇到意想不到的问题,也能了解如何高效查错。

可是要理解张量,并不像 Pandas 数据框那么简单而直观。

你会看到不少 PyTorch 的书籍和教程,都干脆指引你去学会 numpy 。然后告诉你,PyTorch 可以近似看成 numpy 的一个轻量包裹。作者其实,是在寄希望于你能自学好一大块知识结构,并且还可以触类旁通。

你怎么通?

从头学 numpy ?还是更进一步,把线性代数也学一遍?

这样做,听起来没有问题。打牢基础是好事儿嘛。但是,你可能真的等不及。

你可能是想要复现一篇论文里的结果,并且进行调整改进。

等你耐下性子,东一榔头西一棒子,学完了刚才说过的好几门基础课,别人的论文早就发出来了。

大多数时候,科学界只奖励先到者。第二名不会有任何的功劳(credit)。

况且,如果能这样学完,你至少还掌握了一项技能。

更大的可能,是你在自学相关知识体系的途中跌倒了,再也没有爬起来。

3


   

痛点

为什么 PyTorch 初学者,会遭遇这些困境?

因为现有的教程,大多与你不匹配。

甚至就连 PyTorch 的预期用户,也和你不匹配。

PyTorch 的设计,显然不是为了完全不懂编程的普通用户。按照作者原先的预想,只有学过了线性代数、科学计算、数据结构和面向对象程序设计的专业人士,才是它的核心用户群体。

然而,深度学习的突破进展,像一个黑洞,吸引力异常强大。它把许多从来没有学过编程的人,都裹挟了进来。

在机器学习日新月异的进展下,太多领域存在着低垂的果实。只要你学会了应用现有深度学习工具,稍加改进就可以采摘到它们。

这种诱惑,你能抵挡吗?

对这个突然冒出来的人群,现有的教材和教程,很难做出足够快速和必要的调整。所以你学起来,会很吃力。

那么,作为一个非计算机类专业出身的研究者,你需要什么样的教程呢?

它应该至少有以下两个特点:

  • 一站式

  • 样例导向

所谓一站式,就是别只顾给出链接和线索,让读者东奔西走,甚至还得自己寻找相关的学习资源。遇到某个知识点,例如面向对象,或者张量,试图从头到尾完整学习体系知识,显然效率不高。做深度学习需要用到的,就该认真掰开揉碎讲清楚;暂时用不到的,就根本先不要提,免得让学习者被一下子涌来的信息淹没掉。

所谓样例导向,就是能有实际的例子,让学习者跟着作者讲解的进程,轻松上手操作实践。有些知识点,只要上手了,练过,犯过错,你立即就能明白其中的关窍。你从而迅速掌握,并且建立宝贵的成就感。反之,如果只是给你凭空灌输一系列的概念,或许能让你听着好像懂得了。可真正要用的时候,你立即就会感受到什么叫“书到用时方恨少”。

满足上述两个必要条件的合适教程,有吗?

4


   

教程

不好找。

要满足上述两点,教程的编写者就需要长期的技能培养和打磨。技能不仅包括对于 PyTorch 本身的深入理解和掌握,还得充分理解初学者的需求,知道如何把握讲授的进度和节奏。

这还不够。作者还得寻找合适的样例,用形象化的方式表述抽象概念,甚至是用动态的效果展示张量操作与权重变化……这些,都需要耗费大量宝贵的时间。

大部分机器学习领域的教材和教程,在编写的时候,都有严格的时间进度限制。这个领域,一直是高强度竞争性。大家生怕自己的东西发布晚了,别人抢占先机,所以很难有足够的耐心。东西做到60分,能有一定合适的阅读学习群体,那还不赶紧发布?等什么?

另外,拥有这种技能的作者,往往机会成本非常高。能够全心全意投入教学,而不选择拿着自己高超的深度学习应用技能出去赚快钱,也非易事。

我最开始学 PyTorch 时,尝试了若干主流 MOOC 平台,还见识了不少网红教师的教程。可惜,不仅学得效率低,过程也很痛苦。

后来,我终于找到一套视频课程,真的可以满足上述两点要求。

譬如说,它将张量和面向对象知识的介绍,包含在了课程里面。作者用浅明易懂的例子,让你了解必要概念和技能后,迅速上手。

为了让你能够做一个图像分类深度学习模型,作者真的精心设计,帮你把它拆分成若干前后联系紧密的模块,一一娓娓道来。

视频中使用了不少特效和动画。例如帮助你理解一张图片如何转化成张量,如何经由你自行构造的模型加以转化,最终支持机器判断类别,以及如何计算损失,迭代改进,让你的分类模型越变越聪明。

甚至,对于为什么 GPU 可以加速深度学习,都有专门的章节,给你娓娓道来。

每一个视频,大约都是10分钟-20分钟的长度。足够慢慢谈透一个知识点,也不会让你觉得疲倦。

大部分视频,都结合代码来介绍。你可以打开 Google Colab 或者 Kaggle Notebook ,利用免费的 GPU ,尝试自己建构和运行。

视频末尾,还总是有一些有趣的彩蛋。为了不剥夺你的乐趣,就不剧透了,你自己看。

为了保证视频的品质,这套教程精细打磨。从2018年秋天开始发布第一个视频起,一直持续更新了一年多的时间,才算全部制作完毕。

我学的时候,看教程是很愉快的。但是等候更新如同追剧,总是让人觉得时间过得太慢,很难熬。

好消息是,你现在不用等了。因为该教程所有的篇章都已齐备。你只需学就好了。

羡慕你。

在我的公众号“玉树芝兰”后台,回复“pytorch”,我会发给你全套视频教程的链接。

5


   

小结

这篇文章里,咱们谈到了以下知识点,我帮你梳理一下。

  • PyTorch 在科研领域作用日益重要,你如果做深度学习科研,恐怕是不得不学习它;

  • PyTorch 包含了一些面向对象、张量操作等前导知识要求,初学者会有不小的学习障碍。所以选择好的教程很重要;

  • 在良莠不齐的 PyTorch 教程中,我把自己已发现的最精良一个视频教程推荐给你。希望它也能帮你快速上手 PyTorch,助你早日做出自己的优秀研究成果。论文发表了,别忘请我喝杯咖啡。

祝深度学习愉快!

感觉有用的话,请点“在看”,并且把它转发给你身边有需要的朋友。

赞赏就是力量。

由于微信公众号外部链接的限制,文中的部分链接可能无法正确打开。如有需要,请点击文末的“阅读原文”按钮,访问可以正常显示外链的版本。

订阅我的微信公众号“玉树芝兰”,第一时间免费收到文章更新。别忘了加星标,以免错过新推送提示。

如果你对 Python 与数据科学感兴趣,希望能与其他热爱学习的小伙伴一起讨论切磋,答疑解惑,欢迎加入知识星球。

6


   

延伸阅读

你可能也会对以下话题感兴趣。点击链接就可以查看。


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存