人教版小学三年级数学下册必考知识点梳理
【部分图表无法正常编辑,需要全套电子文档的请加李老师微信everyday135联系领取】
第一单元 位置与方向
1、东与西相对,南与北相对。按顺时针方向转:东→南→西→北。
2、地图通常是按上北下南,左西右东绘制的。
3、八个方向:东、南、西、北、东南、东北、西南、西北。
4、北斗星永远在北方,影子与太阳的方向相对,早上太阳在东方,中午在南方,下午在西方。
第二单元 除数是一位数的除法
1、笔算除法顺序:确定商的位数,试商,检查,验算。
2、基本规律:
(1)从高位除起,除到哪一位,就把商写在那一位;
(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)
(3)哪一位有余数,就和后面一位上的数合起来再除;
(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
3、除法用乘法来验算
没有余数的除法: 有余数的除法:
被除数÷除数=商 被除数÷除数=商……余数
商×除数=被除数 商×除数+余数=被除数
4、0除以任何数(0除外)都等于0,0乘以任何数都得0,
0加任何数都得任何数本身,任何数减0都得任何数本身。
5、2、3、5倍数的特点
2的倍数:个位上是2、4、6、8、0的数是2的倍数。
5的倍数:个位上是0或5的数是5的倍数。
3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。
比如:462,4+6+2=12,12是3的倍数,所以462是3的倍数。
第三单元 统计
1、求平均数公式:总和÷份数=平均数 总数÷平均数=份数 平均数×份数=总和
2、平均数能较好地反映一组数据的总体情况
3、通常条形统计图能描述一组数据中不同样本之间的差异,
折线统计图能描述一组数据的变化趋势,扇形统计图能描述一组数据占总体的百分比。
4、条形统计图中,一定要看清楚一格表是多少个单位,是表示1、2、5、10或更多单位。
第四单元 年、月、日
1、重要日子:1949年10月1日中华人民共和国成立;常用的时间单位有年、月、日、时、分、秒。
1月1日元旦节;3月8日妇女节;3月12日植树节;5月1日劳动节;5月四日青年节;
6月1日儿童节;7月1日建党节;8月1日建军节;9月10日教师节;10月1日国庆节。
2、一年有十二个月,1.3.5.7.8.10.12 这七个月是31天, 4.6.9.11这四个月是30天,二月既不是大月也不是小月。平年2月是28天,平年全年有365天,有(520)个星期零(1)天;闰年2月是29天,闰年全年有366天,有(52)个星期零(2)天。
平年上半年有(181)天,闰年上半年有(182)天,每一年的下半年都是(184)天。
3、一年分四季,每3个月为一季;
一、二、三月是第一季度,(第一季度平年有90天,闰年有91天)
四、五、六月是第二季度,(第二季度有91天)
七、八、九月是第三季度,(第三季度有92天)
十、十一、十二是第四季度。(第四季度有92天)
(7月、8月连续是31天,12月和第二年1月连续是31天)
4、公历年份是4的倍数一般都是闰年(如:1996÷4=499),但公历年份是整百数的,必须是400的倍数才是闰年。如:1900年不是闰年而是平年,而2000年是闰年(2000÷400=5)。
5、推算星期几的方法 例:已知今天星期三,再过50天星期几?
解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期四。
6、计算天数[分月计算]如6月12到8月17日是多少天?
月 份 | 6 月 | 7 月 | 8 月 |
思 考 | 12日----30日 | 31天 | 1日-----17日 |
30-12+1=19天 | 31天 | 17天 | |
合计:19+31+17=57天 |
7、24时计时法:在一天里,钟表上时针正好走2圈,共24小时,分针走(24×60)1440圈,所以经常采用0到24时计时法,通常叫做24时计时法。
8、24时计时法与普通计时法的转换:超过下午1时的时刻用24时计时法表示:就是把原来的时刻加上12。把24时计时法表示成普通计时法,中午12点以前的数值不变,超过13时的时刻就减12,并加上午、下午、晚上等字在时刻前面。比如:下午3时→3+12=15时, 16时:16-12=下午4时。
9、计算经过时间,结束时刻 — 开始时刻=时间段。比如10:00开门营业,22:00关门,营业时间为:22:00—10:00=12(小时)
10、时间单位进率:1世纪=100年,1年=12个月,1日=24小时,1小时=60分钟,1分钟=60秒钟
第五单元 两位数乘两位数
1、口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。如:30×500=15000 可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
2、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。几个特殊数:25×4=100 ,125×8=1000
3、相关公式:因数×因数 = 积 积÷因数= 另一个因数
第六单元 面积
1.物体的表面或封闭图形的大小,就是它们的面积。封闭图形一周的长度,是它的周长。
2.比较两个图形面积的大小,要用统一的面积单位来测量。
3.①边长1厘米的正方形,面积是1平方厘米;
②边长1分米的正方形,面积是1平方分米。③边长1米的正方形,面积是1平方米。
边长是100米的正方形,面积就是1公顷。边长是1000米的正方形,面积就是1平方千米。
4.长方形的面积=长×宽 正方形的面积=边长×边长
长方形的周长=(长+宽)×2 正方形的周长=边长×4
已知长方形的面积求长:长=面积÷宽 已知正方形的周长求边长:边长=面积÷4
已知长方形的周长求长:长=周长÷2-宽
5.相邻两个面积单位之间的进率是100 长度单位之间的进率
1平方分米=100平方厘米 1厘米=10毫米
1平方米 =100平方分米 1分米=10厘米
1公顷=10000平方米 1米=10分米
1平方千米=100公顷 1千米=1000米
6.周长相等的两图形,面积不一定相等。面积相等的图形,周长也不一定相等。
第七单元 小数的初步认识
1、小数点左边的为整数部分,小数点右边的为小数部分。把1平均分成10份,每份是它的十分之一,也就是0.1。把1平均分成100份,每份就是它的一百分之一,也就是0.01。
2、比较两个小数的大小,先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。
3、计算小数加、减法时,一定要先对齐小数点再相加、减。
第八单元 解决问题
目标:进一步经历解决问题的过程,熟练应用两步计算解决问题。感受解决问题的策略多样化。
正确分析数量关系,明确解决问题的思考过程。
1.用乘法计算的两步应用题。2.用除法计算的两步应用题。3.另外还有乘加、乘减应用题。
第九单元 数学广角
目标:1、体会【集合】的数学思想方法。集合理论是数学的基础。
分类思想和方法实际上就是集合理论的基础。 两个圆是【集合圈】
2.体会【等量代换】数学的思想方法。
等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。
3、关于倍数问题:
两数和÷倍数和=1倍的数
两数差÷倍数差=1倍的数
例:已知甲数是乙数的5倍,甲乙两数的和是24,求甲乙两数?
分析:这里把乙数看成1倍的数,那甲数就是5倍的数。它们加起来就相当于乙数的6倍了,而它们加起来的和是24。这也就相当于说乙数的6倍是24。所以乙数为:24÷6=4,甲数为:4×5=20
同样:若已知甲数是乙数的5倍,甲乙两数之差是24,求甲乙两数?
分析:这里把乙数看成1倍的数,那甲数就是5倍的数。它们的差就相当于乙数的4倍了,而它们的差是24。这也就相当于说乙数的4倍是24。所以乙数为:24÷4=6,甲数为:6×5=30
4、和差问题:(两数和—两数差)÷2=较小的数 (两数和+ 两数差)÷2=较大的数
例:已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少?
知道:两数和+两数差=乙数×2 (两数和+ 两数差)÷2=乙数
解:假设乙数是较大的数。乙:(37+19)÷2=28 甲:28-19=9
5、 锯木头问题。
王叔叔把一根木条锯成4段用12分钟,锯成5段需要多长时间?
如图,锯成4段只用锯3次,也就是锯3次要12分钟,那么可以知道锯一次要:12÷3=4(分钟)
而锯成5段只用锯4次,所需时间为:4×4=16(分钟)
再由公式:商×除数+余数=被除数,知道被除数最大应是6×8+7=55,最小应是6×8+1=49。
②少年宫有一串彩灯,按1红,2黄,3绿排列着,请你猜一猜第89个是什么颜色?
……
由图可知,彩灯一组为:1+2+3=6(个),照这样下去,89÷6=14(组)
【分享有价值,传递正能量!】
【更多更好的免费学习资料和学习方法,请长按下面二维码关注公众号】
本页面已开通互动留言,请点击底部右下角”写留言”,即可参与留言互动