查看原文
其他

ChemSusChem:氮掺杂碳负载AuPd催化剂实现糠醇和糠醛无碱氧化制呋喃羧酸

WileyChem WileyChem 2022-09-26

2,5-呋喃二羧酸(FDCA)是生物基关键平台化合物5-羟甲基糠醛(HMF)的氧化产物,其分子结构中含有与石油基单体对苯二甲酸(PTA)相似的芳环体系,被认为是PTA的理想替代品,可用于生产与聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇脂(PBT)等结构相似的生物基塑料。因此,它被美国能源部评为12种最具潜力的生物基平台化学品之一,被杜邦和DSM公司誉为“沉睡的巨人”。开发具有选择性氧化HMF制备FDCA的多相催化剂在生物质平台分子可持续转化领域具有重要意义。目前,选择性催化HMF氧化制备FDCA的反应往往需要在碱性水溶液体系中进行,如在作者的前期工作中,基于沉淀聚合技术在SiO2纳米颗粒表面包覆含氮聚合物,热解并去除模板后负载贵金属催化剂,成功合成了碗状氮掺杂多级孔碳载AuPd双贵金属纳米反应器。氮掺杂多孔碳载体对HMF具有优异的吸附能力,被吸附到催化剂表面的HMF分子在Na2CO3水溶液中,AuPd优异的催化氧化作用下高效转化为重要生物质基平台化学品FDCA(Journal of Catalysis,2021, 396, 40-53)。作为一项连续的工作,作者对氮掺杂多孔碳载体进行了改性,并负载AuPd纳米颗粒,研究了无碱条件下将糠醇和糠醛升级为呋喃羧酸的可行性。

硝化处理能改变氮掺杂碳载体表面的化学性质,增强其吸附HMF及中间产物能力的同时,对水分子具有一定的解离能力。在不加碱的情况下,以糠醇和糠醛为原料可制得糠酸(FDCA, 2-呋喃酸,5-甲基-2-呋喃酸),产率为35.6-95.4%。通过原位红外及ESR测试证实,水分子在催化剂载体表面解离产生羟基自由基,氧分子移除从载体转移到金属表面的电子形成超氧自由基,以此取代碱性溶剂的加入,最终实现无碱催化。基于此催化剂,提出了相关的反应机理:水分子吸附在催化剂表面解离形成游离羟基,将HMF的醛基氧化为双羟基,形成偕二醇。不稳定的偕二醇的C-H和O-H被游离羟基取代一个H后分别形成羰基和羧基,形成化合物5-羟甲基-2-呋喃甲酸(HMFCA)。氧的加入将从催化剂载体转移到金属表面的电子移除,并形成超氧自由基,同时金属活性位点再次暴露,使整个反应向正方向移动。随后,羟基自由基与HMFCA的羟基中的氢相互作用形成醛基,得到中间体FFCA。将羟甲基进一步氧化为醛基,得到最终产物FDCA。此外,循环实验表明,经过四次循环实验后催化剂仍保持着优异的催化性能。本研究实现了在无碱条件下选择性氧化HMF合成FDCA,解释了H2O在反应过程中的重要作用,为通过改变载体表面极性实现无碱氧化HMF制备FDCA提供了有效策略。

文信息

Base-Free Aerobic Oxidation of Furfuralcohols and Furfurals to Furancarboxylic Acids over Nitrogen-Doped Carbon-Supported AuPd Bowl-Like Catalyst

Wen Guan, Prof. Dr. Yunlei Zhang, Dr. Changhao Yan, Dr. Yao Chen, Yanan Wei, Yu Cao, Fang Wang, Prof. Dr. Pengwei Huo


ChemSusChem

DOI: 10.1002/cssc.202201041

点击左下角 “ 阅读原文 ” ,可直达阅读该论文原文。


ChemSusChem

ChemSusChem是欧洲化学协会(Chemistry Europe)的官方期刊并由Wiley–VCH出版,是一本有关化学与可持续性研究的顶级跨学科期刊。该期刊通过发表化学、材料科学、化学工程和生物技术等领域的论文,展示了对可持续性和能源相关的最佳研究。


更多精选文章

Angew. Chem. :首个含硼-氮极性键的新型多重共振OLED染料

Angew. Chem. :通过金属单原子修饰抑制非辐射弛豫实现二硫化钼量子点荧光的增强

Angew. Chem. :铂 (II) 分子镊子和客体系统的溶剂调控超分子主客体组装:从独立的主体和客体分子到高阶低聚物

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存