经典文献梳理 | 人口地理学中的人口迁移OD流研究方法
导读
人口迁移OD流的地理格局、空间可视化、空间相互作用机制是人口地理学研究的重要议题。西方对空间相互作用建模(主要以重力模型为主)的研究始于20世纪三、四十年代Zipf提出的人口迁移重力模型。
为了解决模型中可能出现的网络自相关性、零膨胀及迁移流数据的非负计数特征,传统空间相互作用模型被扩展为空间计量OD模型、空间滤波模型、泊松和负二项重力模型、空间Hurdle重力模型等。在国内,随着多尺度、多时段人口迁移数据的公布及多源人口流动大数据可获取性的增加,人口迁移OD流可视化及计量分析成为中国人口地理学研究的重要关注领域。本期推送邀请了香港中文大学地理与资源管理学系古恒宇博士推荐了一份关于“人口地理学中的人口迁移OD流研究方法”的经典文献清单。
推荐人简介
古恒宇
香港中文大学地理与资源管理学系博士后研究员
主要研究方向为人口迁移与城镇化、空间人口分析、城市计算与城市空间治理。在《Annals of the American Association of Geographers》、《Applied Geography》、《Population, Space and Place》、《Cities》、《Habitat International》、《Environment and Planning A》、《Environment and Planning B》、《地理学报》、《地理研究》、《地理科学》等杂志以第一作者、通讯作者发表论文40余篇。任《Spatial Demography》、《地理与地理信息科学》、《热带地理》编委。
推荐语
本期文献目录参考人口地理学中人口迁移OD流研究的发展脉络,主要分为四个部分:1)空间相互作用模型理论基础;2)空间相互作用模型应用及实证拓展;3)空间计量交互模型及空间滤波引力模型;4)空间人口迁移流可视化手段。
第一部分是空间相互作用模型理论基础。空间相互作用模型(Spatial Interaction Model)是当前运用较多的宏观人口迁移模型。空间相互作用模型设定简洁,具有很好的对OD迁移数据拟合能力。最初的空间相互作用重力模型只含有迁入地人口规模、迁出地人口规模、迁移距离3个变量。而基于“推拉理论”及各类社会经济迁移理论改进的拓展重力模型通过考虑一系列迁出地和迁入地人口和经济社会指标作为人口迁移的驱动因素,提高了模型对人口迁移的解释能力。
第二部分是空间相互作用模型应用及实证拓展。近年来,对空间相互作用模型的研究主要集中在两方面:①模型形式拓展:将重力模型与前沿计量模型(如泊松、负二项、PPML、Hurdle重力模型、因素分解法)结合,通过一系列经济计量手段,分解模型中被解释变量的效应,分析模型的误差来源。②研究对象拓展:基于重力模型研究具体化、细分后的各类人口迁移现象,如技术迁移、性别迁移、老年迁移。
第三部分为空间计量交互模型及空间滤波重力模型。人口迁移基于迁出地与迁入地,包含了空间对象的点、线或区域特征。空间计量经济学家和区域科学家们致力于在空间相互作用模型中纳入迁出地、迁入地和迁移流的空间溢出效应,以控制模型中的网络自相关性,降低模型估计的内生性偏误。目前主要采用的手段有空间计量交互模型和空间滤波模型两类。空间计量交互模型常采用空间滞后模型的形式,通过引入空间滞后项对空间溢出效应进行估计,而对数据中由其他原因导致的空间溢出的估计并不充分。另一种处理方法试图通过某种算子“过滤”样本数据中的网络自相关效应,这种处理方法被称为空间滤波(Spatial Filtering)。空间滤波方法不受模型前提假设的限制,通过调整滤波器算子,通常能更彻底地降低误差项中的网络自相关效应。现有的空间滤波方法主要包括自回归线性法、Getis's G法、特征向量空间滤波法(Eigenvector Spatial Filtering,ESF)3种。
第四部分为空间人口迁移流可视化手段。在迁移网络中,OD迁移流和各个地区节点的流入、流出总量呈现一体两面、互不可分的关系,对多时段、多结构、动态变化的各类OD迁移流网络展开可视化分析是人口地理学的重要组成部分。本部分主要为迁移网络可视化前沿方法技术。例如,通过使用弦图(Chord Diagram)、Sunburst图和基于Voronoi的迁移Kaleidoscope图等可视化方法,体现迁移流的特征及其中每个主体作为流入或流出地的相对地位,将迁移网络中各个省份的权重信息表征为图形的面积大小,并从多层级、多地区、多时期的角度观察其稳定特征和变化趋势。
01
空间相互作用模型理论基础
1. Alonso, W. (1978). Systems of cities: Readings on structure, growth, and policy. New York: Oxford University Press.
2. Anselin, L. (1982). Implicit functional relationships between systematic effects in a general model of movement. Regional Science and Urban Economics, 12(3), 365–380.
3. Dodd, S. C. (1950). The interactance hypothesis: A gravity model fitting physical masses and human groups. American Sociological Review, 15(2), 245-256.
4. Fotheringham, A. S. (1983). A new set of spatial interaction models: The theory of competing destinations. Environment and Planning A, 15, 15–36.
5. Fotheringham, A. S. (1986). Modelling hierarchical destination choice. Environment and Planning A, 18, 401–418.
6. Karemera, D., Oguledo, V. I., & Davis, B. (2000). A gravity model analysis of international migration to North America. Applied economics, 32(13), 1745-1755.
7. Lowry, I. (1966). Migration and metropolitan growth: Two analytical reports. San Francisco, CA: Chandler.
8. Newton, I. (1987). Philosophiæ naturalis principia mathematica (Mathematical principles of natural philosophy). London (1687), 1687.
9. Plane, D. A. (1984). Migration space: Doubly constrained gravity model mapping of relative interstate separation. Annals of the Association of American Geographers, 74(2), 244–256.
10. Sen, A., & Smith, T. E. (2012). Gravity models of spatial interaction behavior. Springer Science & Business Media.
11. Stouffer, S. A. (1940). Intervening opportunities: A theory relating mobility and distance. American Sociological Review, 5(6), 845–867.
12. Tobler, W. (1995). Migration: Ravenstein, Thornthwaite, and beyond. Urban Geography, 16(4), 327–343.
13. Wilson, A. G. (1970). Entropy in urban and regional modelling. London: Pion.
14. Wilson, A. G. (1967). A statistical theory of spatial distribution models. Transportation Research, 1(3), 253-269.
15. Zipf, G. K. (1946). The P 1 P 2/D hypothesis: on the intercity movement of persons. American Sociological Review, 11(6), 677-686.
16. Zipf, G. K. (1947). The hypothesis of the ‘minimum equation' as a unifying social principle: with attempted synthesis. American Sociological Review, 12(6), 627-650.
02
空间相互作用模型应用及实证拓展
1. Burger, M., Van Oort, F., & Linders, G. J. (2009). On the specification of the gravity model of trade: Zeros, excess zeros and zero-inflated estimation. Spatial Economic Analysis, 4(2), 167–190.
2. Fan, C. C. (2005). Modeling interprovincial migration in China, 1985-2000. Eurasian Geography and Economics, 46(3), 165-184.
3. Flowerdew, R., & Aitkin, M. (1982). A method of fitting the gravity model based on the Poisson distribution. Journal of Regional Science, 22(2), 191–202.
4. Gu, H. (2021). Understanding the migration of highly and less-educated labourers in post-reform China. Applied Geography, 137, 102605.
5. Gu, H., & Shen, T. (2021). Modelling skilled and less‐skilled internal migrations in China, 2010–2015: Application of an eigenvector spatial filtering hurdle gravity approach. Population, Space and Place, 27(6), e2439.
6. Gu, H., Jie, Y., & Lao, X. (2022). Health service disparity, push-pull effect, and elderly migration in ageing China. Habitat International, 125, 102581.
7. Long, J. S., & Freese, J. (2014). Regression models for categorical dependent variables using Stata. Stata press.
8. Piras, R. (2017). A long‐run analysis of push and pull factors of internal migration in Italy. Estimation of a gravity model with human capital using homogeneous and heterogeneous approaches. Papers in regional Science, 96(3), 571-602.
9. Rogers, A., Willekens, F., Little, J., & Raymer, J. (2002). Describing migration spatial structure. Papers in Regional Science, 81, 29–48.
10. Shen, J. (2012). Changing patterns and determinants of interprovincial migration in China 1985–2000. Population, Space and Place, 18(3), 384-402.
11. Shen, J. (2015). Explaining interregional migration changes in China, 1985–2000, using a decomposition approach. Regional Studies, 49(7), 1176-1192.
12. Shen, J. (2016). Error analysis of regional migration modeling. Annals of the American Association of Geographers, 106(6), 1253-1267.
13. Shen, J. (2017). Modelling interregional migration in China in 2005–2010: The roles of regional attributes and spatial interaction effects in modelling error. Population, Space and Place, 23(3), e2014.
14. 刘晏伶,冯健.中国人口迁移特征及其影响因素——基于第六次人口普查数据的分析[J].人文地理,2014,29(02):129-137.
15. 李扬,刘慧.人口迁移空间格局模拟研究进展与展望[J].地理科学进展,2010,29(10):1162-1170.
16. 马伟,王亚华,刘生龙.交通基础设施与中国人口迁移:基于引力模型分析[J].中国软科学,2012(03):69-77.
03
空间计量交互模型及空间滤波重力模型
1. Anselin, L. (1988). Spatial econometrics: methods and models (Vol. 4). Springer Science & Business Media.
2. Anselin, L. (1988). Model validation in spatial econometrics: a review and evaluation of alternative approaches. International Regional Science Review, 11(3), 279-316.
3. Arbia, G., & Petrarca, F. (2011). Effects of MAUP on spatial econometric models. Letters in Spatial and Resource Sciences, 4(3), 173-185.
4. Autant‐Bernard, C., & LeSage, J. P. (2011). Quantifying knowledge spillovers using spatial econometric models. Journal of regional Science, 51(3), 471-496.
5. Chun, Y. (2008). Modeling network autocorrelation within migration flows by eigenvector spatial filtering. Journal of Geographical Systems, 10(4), 317-344.
6. Chun, Y., & Griffith, D. A. (2011). Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Annals of the Association of American Geographers, 101(3), 523-536.
7. Chun, Y., Griffith, D. A., Lee, M., & Sinha, P. (2016). Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. Journal of Geographical Systems, 18(1), 67-85.
8. Elhorst, J. P. (2014). Spatial econometrics from cross-sectional data to spatial panels. Springer.
9. Elhorst, J. P., Lacombe, D. J., & Piras, G. (2012). On model specification and parameter space definitions in higher order spatial econometric models. Regional Science and Urban Economics, 42(1-2), 211-220.
10. Fischer, M. M., & Griffith, D. A. (2008). Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in the European Union. Journal of Regional Science, 48(5), 969-989.
11. Getis, A., & Griffith, D. A. (2002). Comparative spatial filtering in regression analysis. Geographical analysis, 34(2), 130-140.
12. Griffith, D. A. (2003). Spatial filtering. In Spatial Autocorrelation and Spatial Filtering (pp. 91-130). Springer, Berlin, Heidelberg.
13. Griffith, D. A., & Jones, K. G. (1980). Explorations into the relationship between spatial structure and spatial interaction. Environment and Planning A, 12(2), 187-201.
14. Griffith, D. A., Fischer, M. M., & LeSage, J. (2017). The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions. Letters in Spatial and Resource Sciences, 10(1), 75-86.
15. Grifith, D. A. (2003). Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization New York.
16. Gu, H., Liu, Z., Shen, T., & Meng, X. (2019). Modelling interprovincial migration in China from 1995 to 2015 based on an eigenvector spatial filtering negative binomial model. Population, Space and Place, 25(8), e2253.
17. Gu, H., Liu, Z., & Shen, T. (2020). Spatial pattern and determinants of migrant workers' interprovincial hukou transfer intention in China: Evidence from a National Migrant Population Dynamic Monitoring Survey in 2016. Population, Space and Place, 26(2), e2250.
18. LeSage, J. P., & Pace, R. K. (2008). Spatial econometric modeling of origin‐destination flows. Journal of Regional Science, 48(5), 941-967.
19. Liu, Y., & Shen, J. (2017). Modelling skilled and less‐skilled interregional migrations in China, 2000–2005. Population, Space and Place, 23(4), e2027.
20. Pu, Y., Han, X., Chi, G., Wang, Y., Ge, Y., & Kong, F. (2019). The impact of spatial spillovers on interprovincial migration in China, 2005–10. Regional Studies, 53(8), 1125–1136.
21. 古恒宇,沈体雁,刘子亮,孟鑫.基于空间滤波方法的中国省际人口迁移驱动因素[J].地理学报,2019,74(02):222-237.
22. 蒲英霞,武振伟,葛莹,孔繁花.不确定性视角下的中国省际人口迁移机制分析[J].地理学报,2021,76(12):2964-2977.
23. 蒲英霞,韩洪凌,葛莹,孔繁花.中国省际人口迁移的多边效应机制分析[J].地理学报,2016,71(02):205-216.
04
空间人口迁移流可视化手段
1.Abel, G. J., & Cohen, J. E. (2019). Bilateral international migration flow estimates for 200 countries. Scientific data, 6(1), 1-13.
2.Abel, G. J., & Gietel-Basten, S. (2020). International remittance flows and the economic and social consequences of COVID-19. Environment and Planning A: Economy and Space, 52(8), 1480-1482.
3.Abel, G. J., & Heo, N. (2018). Changing internal migration flows patterns in South Korea. Regional Studies, Regional Science, 5(1), 78-80.
4.Abel, G. J., & Sander, N. (2014). Quantifying global international migration flows. Science, 343(6178), 1520-1522.
5.Ball, S., & Gilligan, C. (2010, May). Visualising migration and social division: Insights from social sciences and the visual arts. In Forum Qualitative Sozialforschung/Forum: Qualitative Social Research (Vol. 11, No. 2).
6.Chen, Y. W., Ni, L., & Ospina-Forero, L. (2021). Visualising internal migration flows across local authorities in England and Wales. Environment and Planning A: Economy and Space, 53(4), 616-618.
7.Gu, H., & Xu, Z. (2022). Kaleidoscope visualisation of China’s internal migration, 1985–2020. Environment and Planning B: Urban Analytics and City Science. https://doi.org/10.1177/23998083221082916.
8.Gu, H., Xu, Z., Zheng, J., & Shen, T. (2022). Visualising global currents of international students between 1999 and 2018. Environment and Planning A: Economy and Space, 54(1), 3-6.
9.Qi, W., Abel, G. J., Muttarak, R., & Liu, S. (2017). Circular visualization of China’s internal migration flows 2010–2015. Environment and Planning A: Economy and Space, 49(11), 2432-2436.
10.Sander, N., Abel, G. J., Bauer, R., & Schmidt, J. (2014). Visualising migration flow data with circular plots (No. 2/2014). Vienna Institute of Demography Working Papers.
11.Wilson, T. (2016). Visualising the demographic factors which shape population age structure. Demographic Research, 35, 867-890.
12.Wood, J., Dykes, J., & Slingsby, A. (2010). Visualisation of origins, destinations and flows with OD maps. The Cartographic Journal, 47(2), 117-129.
推文 | 古恒宇
校对 | 高教村邓肯
编辑 | 奈斯瑞
往期 · 推荐