查看原文
其他

高一数学辅导:三角函数中的诱导公式及其常见题型概括

南宁三中许兴华 许兴华数学 2022-07-17

(许兴华数学)


一、由三角函数中的诱导公式推导出的九组常用公式:

的三角函数值:当k为偶数时,等于a的同名三角函数值;当k 为奇数时,等于a的余名三角函数值,然后在前面加上一个把a看成锐角时原函数值所在象限的符号.

记忆的口诀为“奇变偶不变,符号看象限”。

【解题策略】对于用诱导公式证明三角恒等式的问题,解题的关键在于公式的灵活运用,思路在于如何配角,如何分析角之间的关系.


二、典型例题分析与详解

【考察点1】诱导公式的直接应用

【考察点2】利用诱导公式求值

【解题策略】充分挖掘所求式子中各角与已知式子中的角的关系,利用角的变换及整体思想解题是正确求值的关键。

【引申.拓展】

【考察点3】利用诱导公式进行化简

【分析】运用诱导公式时,要尽可能地将角统一;去掉根号时要注意根号内各三角函数值的大小,从而达到正确化简的目的。

【解题策略】运用诱导公式时,要注意三角函数值的符号和函数名称的变化情况!否则,解题就容易出现错误!

【引申.拓展】

【考察点4】利用诱导公式求角

【考察点5】利用诱导公式证明三角恒等式

【解题策略】证明条件等式一般有两种方法:一是在从被证等式的一边推向另一边的适当时候,将条件代入,从而推得被证等式的另一边,这种方法称作代入法;二是直接将条件等式变形为被证等式,这种方法称作推出法,证明条件等式时,不论使用哪种方法都要盯住目标,根据目标进行恒等变形.

【引申.拓展】

【考察点6】诱导公式的综合运用

【引申.拓展】




欢迎关注微信公众号"许兴华数学":


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存