其他
因果推断领域新书(附PDF):Causal Inference: What If
集智斑图顶刊论文速递栏目上线以来,持续收录来自Nature、Science等顶刊的最新论文,追踪复杂系统、网络科学、计算社会科学等领域的前沿进展。现在正式推出订阅功能,每周通过微信服务号「集智斑图」推送论文信息。扫描上方二维码即可一键订阅。
Introduction: Towards less casual causal inferences I Causal inference without models 1 A definition of causal effect 2 Randomized experiments 3 Observational studies 4 Effect modification 5 Interaction 6 Graphical representation of causal effects 7 Confounding 8 Selection bias 9 Measurement bias 10 Random variability II Causal inference with models 11 Why model? 12 IP weighting and marginal structural models 13 Standardization and the parametric g-formula 14 G-estimation of structural nested models 15 Outcome regression and propensity scores 16 Instrumental variable estimation 17 Causal survival analysis 18 Variable selection for causal inference III Causal inference from complex longitudinal data 19 Time-varying treatments 20 Treatment-confounder feedback 21 G-methods for time-varying treatments 22 Target trial emulation References