其他
信息大脑如何从物理大脑中涌现?
导语
我们的大脑是一个处理信息的动力学系统。数百亿个神经元时刻接受内部和外部刺激,对这些信息进行编码处理,进而形成我们对世界的认知。大脑的信息机能本质上从神经元集群活动的动力学中涌现,可是这种涌现到底是如何发生的?我们的信息大脑和物理大脑之间有什么内在联系?10月29日,清华大学的研究团队在 Physical Review Research 上发表的一项最新理论研究,揭示了大脑的神经动力学与信息加工属性间的基本关系,或有助于我们理解大脑这个复杂系统中各类信息加工特性的涌现。
研究领域:神经科学,统计物理,大脑信息加工,神经动力学,集体运动,涌现
田洋 | 作者
梁金 | 审校
邓一雪 | 编辑
论文题目:
Bridging the information and dynamics attributes of neural activities
论文链接:https://doi.org/10.1103/PhysRevResearch.3.043085
1. 动力学和信息:大脑的双重属性
1. 动力学和信息:大脑的双重属性
2. 神经活动的随机动力学
2. 神经活动的随机动力学
3. 随机动力学的信息属性
3. 随机动力学的信息属性
4. 动力学和信息属性的基本关系
4. 动力学和信息属性的基本关系
发现1
发现2
发现3
发现4
5. 总结与讨论
5. 总结与讨论
参考文献
[1] G. Collell and J. Fauquet, Brain activity and cognition: A connection from thermodynamics and information theory, Front. Psychol. 6, 818 (2015)[2] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, MA, 2001).[3] A. S. Shah, S. L. Bressler, K. H. Knuth, M. Ding, A. D. Mehta, I. Ulbert, and C. E. Schroeder, Neural dynamics and the fundamental mechanisms of event-related brain potentials, Cerebal Cortex 14, 476 (2004).[4] T. P. Vogels, K. Rajan, and L. F. Abbott, Neural network dynamics, Annu. Rev. Neurosci. 28, 357 (2005).[5] G. Deco and E. Hugues, Neural network mechanisms underlying stimulus driven variability reduction, PLoS Comput. Biol 8, e1002395 (2012).[6] B. L. Foster, B. J. He, C. J. Honey, K. Jerbi, A. Maier, and Y. B. Saalmann, Spontaneous neural dynamics and multiscale network organization, Front. Syst. Neurosci. 10, 7 (2016)[7] R. F. Galán, On how network architecture determines the dominant patterns of spontaneous neural activity, PloS ONE 3, e2148 (2008).[8] S. Coombes, Large-scale neural dynamics: Simple and complex, NeuroImage 52, 731 (2010).[9] D. R. Chialvo, Emergent complex neural dynamics, Nat. Phys. 6, 744 (2010).[10] E. D. Lumer, G. M. Edelman, and G. Tononi, Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms, Cerebral Cortex 7, 207 (1997).[11] E. D. Lumer, G. M. Edelman, and G. Tononi, Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing, Cerebral Cortex 7, 228 (1997).[12] M. Martinello, J. Hidalgo, A. Maritan, S. di Santo, D. Plenz, and M. A. Muñoz, Neutral Theory and Scale-Free Neural Dynamics, Phys. Rev. X 7, 041071 (2017).[13] A. Borst and F. E. Theunissen, Information theory and neural coding, Nat. Neurosci. 2, 947 (1999).[14] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Information storage in neural networks with low levels of activity, Phys. Rev. A 35, 2293 (1987).[15] D. Purves, R. Cabeza, S. A. Huettel, K. S. LaBar, M. L. Platt, M. G. Woldorff, and E. M. Brannon, Cognitive Neuroscience (Sinauer Associates, Sunderland, MA, 2008)[16] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M. Alonso, and G. B. Stanley, Temporal precision in the neural code and the timescales of natural vision, Nature (London) 449, 92 (2007).[17] G. Laurent and H. Davidowitz, Encoding of olfactory information with oscillating neural assemblies, Science 265, 1872 (1994).[18] B. B. Averbeck, P. E. Latham, and A. Pouget, Neural correlations, population coding and computation, Nat. Rev. Neurosci. 7, 358 (2006).[19] E. Harth, T. Csermely, B. Beek, and R. Lindsay, Brain functions and neural dynamics, J. Theor. Biol. 26, 93 (1970).[20] G. B. Ermentrout, R. F. Galán, and N. N. Urban, Relating Neural Dynamics to Neural Coding, Phys. Rev. Lett. 99, 248103 (2007).[21] J. D. Murray, A. Bernacchia, N. A. Roy, C. Constantinidis, R. Romo, and X.-J. Wang, Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex, Proc. Natl. Acad. Sci. USA 114, 394 (2017).[22] B. Cessac, H. Paugam-Moisy, and T. Viéville, Overview of facts and issues about neural coding by spikes, J. Physiol. Paris 104, 5 (2010).[23] N. Brenner, S. P. Strong, R. Koberle, W. Bialek, and R. R. d. R. v. Steveninck, Synergy in a neural code, Neural Comput. 12, 1531 (2000).[24] C. E. Schroeder, D. A. Wilson, T. Radman, H. Scharfman, and P. Lakatos, Dynamics of active sensing and perceptual selection, Curr. Opin. Neurobiol. 20, 172 (2010). [25] W. E. Skaggs, B. L. McNaughton, and K. M. Gothard, An information-theoretic approach to deciphering the hippocampal code, in Advances in Neural Information Processing Systems, edited by J. Cowan, G. Tesauro, and J. Alspector (Morgan Kaufmann, MA, 1993), pp. 1030–1037.[26] R. Linsker, Perceptual neural organization: Some approaches based on network models and information theory, Annu. Rev. Neurosci. 13, 257 (1990).[27] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, New York, 1997), Vol. 54.[28] I. Aleksandr and A. Khinchin, Mathematical Foundations of Information Theory (Dover Publications Inc., New York, 1957), Vol. 54.[29] L. Paninski, E. P. Simoncelli, and J. W. Pillow, Maximum likelihood estimation of a stochastic integrate-and-fire neural model, in Advances in Neural Information Processing Systems, edited by L. Saul, Y. Weiss, and L. Bottou (MIT Press, Cambridge, 2004), pp. 1311–1318.[30] D. Heeger, Poisson model of spike generation (unpublished).[31] R. Barbieri, M. C. Quirk, L. M. Frank, M. A. Wilson, and E. N. Brown, Construction and analysis of non-Poisson stimulusresponse models of neural spiking activity, J. Neurosci. Methods 105, 25 (2001).[32] A. N. Burkitt, A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties, Biol. Cybern. 95, 97 (2006). [33] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500 (1952). [34] R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J. 5, 173 (1965). [35] E. M. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw, 14, 1569 (2003). [36] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, New York, NY, 2002).[37] M. Tsodyks, K. Pawelzik, and H. Markram, Neural networks with dynamic synapses, Neural Comput. 10, 821 (1998).[38] S. Grossberg and E. Mingolla, Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations, in The Adaptive Brain II, edited by S. Grossberg (Elsevier, 1987), pp. 143–210.[39] S. Grossberg and M. Kuperstein, Neural Dynamics of Adaptive Sensory-Motor Control: Ballistic Eye Movements (Elsevier, Amsterdam, Netherlands, 2011).[40] J. D. Seelig and V. Jayaraman, Neural dynamics for landmark orientation and angular path integration, Nature (London) 521, 186 (2015).[41] L. Buesing, J. Bill, B. Nessler, and W. Maass, Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons, PLoS Comput. Biol. 7, e1002211 (2011).[42] A. V. Herz, T. Gollisch, C. K. Machens, and D. Jaeger, Modeling single-neuron dynamics and computations: A balance of detail and abstraction, Science 314, 80 (2006).[43] G. Dror and M. Tsodyks, Chaos in neural networks with dynamic synapses, Neurocomputing 32, 365 (2000).[44] S.-I. Amari, Dynamics of pattern formation in lateralinhibition type neural fields, Biol. Cybern. 27, 77 (1977).[45] K. Kishimoto and S.-I. Amari, Existence and stability of local excitations in homogeneous neural fields, J. Math. Biol. 7, 303 (1979). [46] N. P. Rougier, Dynamic neural field with local inhibition, Biol. Cybern. 94, 169 (2006).[47] A. Hutt, M. Bestehorn, and T. Wennekers, Pattern formation in intracortical neuronal fields, Netw. Comput. Neural Syst. 14, 351 (2003).[48] E. Montbrió, D. Pazó, and A. Roxin, Macroscopic Description for Networks of Spiking Neurons, Phys. Rev. X 5, 021028 (2015).[49] R. Engelken, F. Wolf, and L. F. Abbott, Lyapunov spectra of chaotic recurrent neural networks, arXiv:2006.02427.[50] H. Sompolinsky, A. Crisanti, and H.-J. Sommers, Chaos in Random Neural Networks, Phys. Rev. Lett. 61, 259 (1988)[51] “A meeting with Enrico Fermi“ in Nature 427 (22 January 2004) p. 297[52] Tian Y, Li G, Sun P. Bridging the information and dynamics attributes of neural activities[J]. Physical Review Research, 2021, 3(4): 043085.[53] N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, Neurophysiological investigation of the basis of the FMRI signal, Nature (London) 412, 150 (2001).[54] K. Lundengård, in Mechanistic Modelling—A BOLD Response to the fMRI Information Loss Problem, Linköping University Medical Dissertations (Linköping University Electronic Press, Linköping, Sweden, 2017), Vol. 1591.[55] A. Ekstrom, How and when the FMRI bold signal relates to underlying neural activity: The danger in dissociation, Brain Res. Rev. 62, 233 (2010). [62] K. D. Singh, Which neural activity do you mean? FMRI, MEG, oscillations and neurotransmitters, Neuroimage 62, 1121 (2012).[56] B. Li, C. Wu, M. Wang, K. Charan, and C. Xu, An adaptive excitation source for high-speed multiphoton microscopy, Nature Methods 17, 163 (2020).[57] M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, In vivo multiphoton microscopy of deep brain tissue, J. Neurophysiol. 91, 1908 (2004). [58] F. Helmchen and W. Denk, New developments in multiphoton microscopy, Curr. Opin. Neurobiol. 12, 593 (2002).[59] M. Diesmann, M.-O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks, Nature (London) 402, 529 (1999). [60] Z. Xiao, J. Zhang, A. T. Sornborger, and L. Tao, Cusps enable line attractors for neural computation, Phys. Rev. E 96, 052308 (2017).[61] L. Molgedey, J. Schuchhardt, and H. G. Schuster, Suppressing Chaos in Neural Networks by Noise, Phys. Rev. Lett. 69, 3717 (1992).[62] G. Lajoie, K. K. Lin, and E. Shea-Brown, Chaos and reliability in balanced spiking networks with temporal drive, Phys. Rev. E 87, 052901 (2013).[63] G. Lajoie, J.-P. Thivierge, and E. Shea-Brown, Structured chaos shapes spike-response noise entropy in balanced neural networks, Front. Comput. Neurosci. 8, 123 (2014).[64] R. E. Passingham, K. E. Stephan, and R. Kötter, The anatomical basis of functional localization in the cortex, Nat. Rev. Neurosci. 3, 606 (2002).[65] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. Gopinath, Brain functional localization: A survey of image registration techniques, IEEE Trans. Med. Imaging 26, 427 (2007).[66] G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, Threedimensional random access multiphoton microscopy for functional imaging of neuronal activity, Nat. Neurosci. 11, 713 (2008).[67] K. W. Dunn and T. A. Sutton, Functional studies in living animals using multiphoton microscopy, ILAR J. 49, 66 (2008).[68] I. Ulbert, E. Halgren, G. Heit, and G. Karmos, Multiple microelectrode-recording system for human intracortical applications, J. Neurosci. Methods 106, 69 (2001). [69] D. D. Cox, A. M. Papanastassiou, D. Oreper, B. B. Andken, and J. J. DiCarlo, High-resolution three-dimensional microelectrode brain mapping using stereo microfocal x-ray imaging, J. Neurophysiol. 100, 2966 (2008).[70] I. Nemenman, G. D. Lewen, W. Bialek, and R. R. D. R. Van Steveninck, Neural coding of natural stimuli: Information at sub-millisecond resolution, PLoS Comput. Biol. 4, e1000025 (2008).[71] S. Wu, S.-i. Amari, and H. Nakahara, Population coding and decoding in a neural field: A computational study, Neural Comput. 14, 999 (2002).[72] R. Q. Quiroga and S. Panzeri, Extracting information from neuronal populations: Information theory and decoding approaches, Nat. Rev. Neurosci. 10, 173 (2009). [73] T. Toyoizumi, K. Aihara, and S.-I. Amari, Fisher Information for Spike-Based Population Decoding, Phys. Rev. Lett. 97, 098102 (2006).[74] M. Brett, I. S. Johnsrude, and A. M. Owen, The problem of functional localization in the human brain, Nat. Rev. Neurosci. 3, 243 (2002).[75] S. Qin and Z. Ji, Multi-Resolution Time-Frequency Analysis for Detection of Rhythms of EEG Signals, in 3rd IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 338–341.[76] Y. Li, H.-L. Wei, S. A. Billings, and P. Sarrigiannis, Time-varying model identification for time–frequency feature extraction from EEG data, J. Neurosci. Methods 196, 151 (2011).[77] K. Indiradevi, E. Elias, P. Sathidevi, S. D. Nayak, and K. Radhakrishnan, A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram, Comput. Biol. Med. 38, 805 (2008).
(参考文献可上下滑动查看)
因果涌现读书会
跨尺度、跨层次的涌现是复杂系统研究的关键问题,生命起源和意识起源这两座仰之弥高的大山是其代表。而因果涌现理论、机器学习重整化技术、自指动力学等近年来新兴的理论与工具,有望破解复杂系统的涌现规律。由北京师范大学教授、集智俱乐部创始人张江等发起的「因果涌现」系列读书会,将组织对本话题感兴趣的朋友,深入研读相关文献,激发科研灵感。读书会为线上举办,每周由 1-2 名读书会成员领读相关论文。从2021年8月14日开始,每周六上午9:00-11:00,持续至11月。因果涌现读书会
在本周六上午9:00-12:00,北京师范大学系统科学学院教授张江会带来因果涌现读书会第12期分享,主题是「从自指到自指动力学」,本次报告将分三部分进行讨论。首先,讨论自指和因果涌现之间的关系是什么;其次,从图灵机可计算性理论的角度介绍自指及其重要性;第三部分介绍自指动力学的一些研究工作。最后,对未来待研究的主题展开展望和讨论。
本次分享涉及到较多未发表的工作,仅对读书会成员开放,如果感兴趣,欢迎大家扫码报名读书会。
本季读书会详情与报名方式请参考:因果涌现读书会启动:连接因果、涌现与自指——跨尺度动力学与因果规律的探索
推荐阅读
网络神经科学前沿:大脑如何在局部和全局高效处理信息? 作为因果科学家的神经系统:因果编码 PNAS:大脑如何整合多感官模态信息,进行因果推断? PNAS:不靠大脑,黏菌在管径网络中存储食物信息 《张江·复杂科学前沿27讲》完整上线! 加入集智,一起复杂!
点击“阅读原文”,报名读书会