图注:超级传播事件的动力学。风险随着时间的推移而演变,是人口行为和现行政策的函数。(A 和 B)每周每个类别带来的风险,使用下面的相应地图定义。作为参考,顶部的灰色区域显示了估计的每周发病率。(C 和 D)x 轴代表与每个类别相关的总感染比例,而 y 轴代表每个类别中可归因于超级传播事件的感染份额。请注意,在整个时期内所有社会环境中产生的所有感染中,感染的比例是标准化的。这定义了一个连续风险地图,其中感染较少且超级传播事件贡献低的地方将位于左下角。感染人数高但超级传播事件贡献低的地方位于右下角。相反,超级传播事件贡献大但感染量低的地方位于左上角。最后,感染人数多且上证所做出重要贡献的地方位于右上角。与 A 和 B 中的每个图块相关的颜色是从 C 和 D 中定义的平面中点的位置提取的。C 和 D 中的点显示类别艺术/博物馆和杂货店每周位置的演变,箭头表示时间演化。
Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic’s first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.